代价敏感的空中目标意图识别方法
收稿日期: 2023-02-13
修回日期: 2023-02-27
录用日期: 2023-04-17
网络出版日期: 2023-04-21
基金资助
国家自然科学基金(61806219);陕西省科学基金(2021JM-226);陕西省高校科协青年人才托举计划(20190108);陕西省创新能力支撑计划(2020KJXX-065)
A cost-sensitive method for aerial target intention recognition
Received date: 2023-02-13
Revised date: 2023-02-27
Accepted date: 2023-04-17
Online published: 2023-04-21
Supported by
National Natural Science Foundation of China(61806219);National Science Foundation of Shaanxi Provence(2021JM-226);Young Talent Fund of University and Association for Science and Technology in Shaanxi(20190108);Innovation Capability Support Plan in Shaanxi(2020KJXX-065)
空中意图识别是防空作战指挥决策的基本依据,也是战场认知和智能决策的前提和基础。然而,现有的研究大单一地追求意图识别的准确率,没有考虑意图识别的误判代价是否等价。针对空中目标作战意图识别在现代防空作战决策中的重要作用和现阶段意图识别面临的没有考虑误判代价的问题,设计了一种针对空中目标时序数据的GRU-FCN模型提高识别能力,同时提出了一种针对代价敏感意图识别模型的CAIR改进方法。首先,通过分析防空作战的特点,获取空中目标的意图特征并进行预处理。其次,利用GRU模型捕捉时序特征,FCN模型提取数据中的复杂特征,加入CAIR算法使模型具备代价敏感意图识别的能力。最后,通过仿真实验、消融实验、对比实验验证了本文所提模型的效果。实验分析表明:GRU-FCN模型的准确率达到了98.57%,超过对比实验中其他空中目标意图识别模型2.24%;融入代价敏感改进策略后,整体误判代价由0.346 7降为0.175 7,在保证了准确率满足要求的同时具备了代价敏感意图识别的能力。
关键词: 深度学习; 代价敏感; 空中目标; 意图识别; 门控循环单元(GRU); 全卷积网络(FCN)
丁鹏 , 宋亚飞 . 代价敏感的空中目标意图识别方法[J]. 航空学报, 2023 , 44(24) : 328551 -328551 . DOI: 10.7527/S1000-6893.2023.28551
Air intention recognition is the key to the transition from the information domain to the cognitive domain, serving as the basis for command and decision making in air defense operations, as well as the prerequisite and foundation for battlefield cognition and intelligent decision making. It has always been considered the core content of battlefield situational awareness. However, existing research mostly focuses solely on the accuracy of intention recognition, without considering whether the misjudgment costs of intention recognition are equivalent. Air target intention recognition should consider both accuracy and cost sensitivity. To solve the problem of different misjudgments that may cause different losses to our side, a new deep learning model (GRU-FCN) for cost sensitive aerial target intention recognition is designed based on gated cyclic units and fully convolutional networks, and a cost sensitive improvement strategy is also proposed. Experimental analysis shows that the accuracy of the GRU-FCN model reaches 98.57%, surpassing other aerial target intention recognition models in the comparative experiment by 2.24%. After incorporating the cost sensitive improvement strategy, the overall misjudgment cost has been reduced from 0.346 7 to 0.175 7, ensuring that the accuracy meets the requirements while also possessing the ability to recognize cost sensitive intentions.
1 | 姚庆锴, 柳少军, 贺筱媛, 等. 战场目标作战意图识别问题研究与展望[J]. 指挥与控制学报, 2017, 3(2): 127-131. |
YAO Q K, LIU S J, HE X Y, et al. Research and prospect of battlefield target operational intention recognition[J]. Journal of Command and Control, 2017, 3(2): 127-131 (in Chinese). | |
2 | XIA P C, CHEN M, ZOU J, et al. Prediction of air target intention utilizing incomplete information[C]∥Chinese Intelligent Systems Conference. Singapore: Springer, 2016: 395-403. |
3 | 陈优敏, 李长云. 基于知识图谱的目标战术意图识别仿真[J]. 计算机仿真, 2019, 36(8): 1-4, 19. |
CHEN Y M, LI C Y. Simulation of target tactical intention recognition based on knowledge map[J]. Computer Simulation, 2019, 36(8): 1-4, 19 (in Chinese). | |
4 | 尹翔, 张萌, 陈梦乔. 基于判别分析的空中目标作战意图识别[J]. 弹箭与制导学报, 2018, 38(3): 46-50. |
YIN X, ZHANG M, CHEN M Q. Combat intention recognition of the target in the air based on discriminant analysis[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2018, 38(3): 46-50 (in Chinese). | |
5 | XU Y H, CHENG S Y, ZHANG H B, et al. Air target combat intention identification based on IE-DSBN[C]∥2020 International Workshop on Electronic Communication and Artificial Intelligence (IWECAI). Piscataway: IEEE Press, 2020: 36-40. |
6 | XU X M, YANG R N, FU Y. Situation assessment for air combat based on novel semi-supervised naive Bayes[J]. Journal of Systems Engineering and Electronics, 2018, 29(4): 768-779. |
7 | 周旺旺, 姚佩阳, 张杰勇, 等. 基于深度神经网络的空中目标作战意图识别[J]. 航空学报, 2018, 39(11): 322476. |
ZHOU W W, YAO P Y, ZHANG J Y, et al. Combat intention recognition for aerial targets based on deep neural network[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11): 322476 (in Chinese). | |
8 | 翟翔宇, 杨风暴, 吉琳娜, 等. 标准化全连接残差网络空战目标威胁评估[J]. 火力与指挥控制, 2020, 45(6): 39-44. |
ZHAI X Y, YANG F B, JI L N, et al. Air combat targets threat assessment based on standardized fully connected network and residual network[J]. Fire Control & Command Control, 2020, 45(6): 39-44 (in Chinese). | |
9 | 钱钊, 刘钦, 鹿瑶, 等. 基于长短时神经网络的目标意图识别[J]. 太赫兹科学与电子信息学报, 2022, 20(11): 1156-1162. |
QIAN Z, LIU Q, LU Y, et al. Identification of target’s combat intention based on long short term memory network[J]. Journal of Terahertz Science and Electronic Information Technology, 2022, 20(11): 1156-1162 (in Chinese). | |
10 | 胡智勇, 刘华丽, 龚淑君, 等. 基于随机森林的目标意图识别[J]. 现代电子技术, 2022, 45(19): 1-8. |
HU Z Y, LIU H L, GONG S J, et al. Target intention recognition based on random forest[J]. Modern Electronics Technique, 2022, 45(19): 1-8 (in Chinese). | |
11 | TENG F, SONG Y F, GUO X P. Attention-TCN-BiGRU: An air target combat intention recognition model[J]. Mathematics, 2021, 9(19): 2412. |
12 | WANG S Y, WANG G, FU Q, et al. STABC-IR: An air target intention recognition method based on bidirectional gated recurrent unit and conditional random field with space-time attention mechanism[J]. Chinese Journal of Aeronautics, 2023, 36(3): 316-334. |
13 | TENG F, GUO X P, SONG Y F, et al. An air target tactical intention recognition model based on bidirectional GRU with attention mechanism[J]. IEEE Access, 2021, 9: 169122-169134. |
14 | QU C X, GUO Z C, XIA S J, et al. Intention recognition of aerial target based on deep learning[J]. Evolutionary Intelligence, 2022: 1-9. |
15 | BHATT D, PATEL C, TALSANIA H, et al. CNN variants for computer vision: History, architecture, application, challenges and future scope[J]. Electronics, 2021, 10(20): 2470. |
16 | SHERSTINSKY A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network[J]. Physica D: Nonlinear Phenomena, 2020, 404: 132306. |
17 | LIPTON Z C, BERKOWITZ J, ELKAN C. A critical review of recurrent neural networks for sequence learning[DB/OL]. arXiv preprint:1506.00019, 2015. |
18 | LI X C, MA X F, XIAO F C, et al. Time-series production forecasting method based on the integration of Bidirectional Gated Recurrent Unit (Bi-GRU) network and Sparrow Search Algorithm (SSA)[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109309. |
19 | DEY R, SALEM F M. Gate-variants of Gated Recurrent Unit (GRU) neural networks[C]∥2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS). Piscataway: IEEE Press, 2017: 1597-1600. |
20 | LINDEMANN B, MüLLER T, VIETZ H, et al. A survey on long short-term memory networks for time series prediction[J]. Procedia CIRP, 2021, 99: 650-655. |
21 | CHENG J P, DONG L, LAPATA M. Long short-term memory-networks for machine reading[DB/OL]. arXiv preprint: 1601.06733, 2016. |
22 | GRAVES A. Long short-term memory[M]∥Supervised Sequence Labelling with Recurrent Neural Networks. Berlin: Springer, 2012: 37-45. |
23 | CHENG Y, WANG D, ZHOU P, et al. Model compression and acceleration for deep neural networks: The principles, progress, and challenges[J]. IEEE Signal Processing Magazine, 2018, 35(1): 126-136. |
24 | LA ROSA L E C, SOTHE C, FEITOSA R Q, et al. Multi-task fully convolutional network for tree species mapping in dense forests using small training hyperspectral data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 179: 35-49. |
25 | ELSAYED N, MAIDA A S, BAYOUMI M. Deep gated recurrent and convolutional network hybrid model for univariate time series classification[DB/OL]. arXiv preprint:1812.07683, 2018. |
26 | KARIM F, MAJUMDAR S, DARABI H, et al. LSTM fully convolutional networks for time series classification[J]. IEEE Access, 2017, 6: 1662-1669. |
27 | 陈浩, 任卿龙, 滑艺, 等. 基于模糊神经网络的海面目标战术意图识别[J]. 系统工程与电子技术, 2016, 38(8): 1847-1853. |
CHEN H, REN Q L, HUA Y, et al. Fuzzy neural network based tactical intention recognition for sea targets[J]. Systems Engineering and Electronics, 2016, 38(8): 1847-1853 (in Chinese). | |
28 | 朱可钦, 董彦非. 空战机动动作库设计方式研究[J]. 航空计算技术, 2001, 31(4): 50-52. |
ZHU K Q, DONG Y F. Study on the design of air combat maneuver library[J]. Aeronautical Computer Technique, 2001, 31(4): 50-52 (in Chinese). | |
29 | 孙艺聪, 田润澜, 王晓峰, 等. 基于改进CLDNN的辐射源信号识别[J]. 系统工程与电子技术, 2021, 43(1): 42-47. |
SUN Y C, TIAN R L, WANG X F, et al. Emitter signal recognition based on improved CLDNN[J]. Systems Engineering and Electronics, 2021, 43(1): 42-47 (in Chinese). | |
30 | FAWAZ H I, FORESTIER G, WEBER J, et al. Deep learning for time series classification: A review[J]. Data Mining and Knowledge Discovery, 2019, 33(4): 917-963. |
31 | ZHAO B D, LU H Z, CHEN S F, et al. Convolutional neural networks for time series classification[J]. Journal of Systems Engineering and Electronics, 2017, 28(1): 162-169. |
32 | RUIZ A P, FLYNN M, LARGE J, et al. The great multivariate time series classification bake off: A review and experimental evaluation of recent algorithmic advances[J]. Data Mining and Knowledge Discovery, 2021, 35(2): 401-449. |
33 | PINNERI C, SAWANT S, BLAES S, et al. Sample-efficient cross-entropy method for real-time planning[DB/OL]. arXiv preprint: 2008.06389, 2020. |
34 | KIEFER J, WOLFOWITZ J. Stochastic estimation of the maximum of a regression function[J]. The Annals of Mathematical Statistics, 1952, 23(3): 462-466. |
35 | TIELEMAN T, HINTON G. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude[J]. COURSERA: Neural Networks for Machine Learning, 2012, 4(2): 26-31. |
36 | KINGMA D P, BA J. Adam: A method for stochastic optimization[DB/OL]. arXiv Preprint: 1412.6980, 2014. |
37 | 滕飞, 刘曙, 宋亚飞. BiLSTM-Attention: 一种空中目标战术意图识别模型[J]. 航空兵器, 2021, 28(5): 24-32. |
TENG F, LIU S, SONG Y F. BiLSTM-attention: An air target tactical intention recognition model[J]. Aero Weaponry, 2021, 28(5): 24-32 (in Chinese). | |
38 | ZHU W B, WEBB Z T, MAO K T, et al. A deep learning approach for process data visualization using t-distributed stochastic neighbor embedding[J]. Industrial & Engineering Chemistry Research, 2019, 58(22): 9564-9575. |
/
〈 |
|
〉 |