专栏

基于MBD-CFD的软管-锥套空中加油仿真框架

  • 刘钒 ,
  • 黄霞 ,
  • 马率 ,
  • 张露 ,
  • 崔兴达 ,
  • 鲍鑫彪
展开
  • 中国空气动力研究与发展中心,绵阳  621000
.E-mail: hx_1984.4@163.com

收稿日期: 2022-12-19

  修回日期: 2023-03-27

  录用日期: 2023-04-17

  网络出版日期: 2023-04-21

基金资助

国家自然科学基金(12102446)

Simulation framework for hose-drogue aerial refueling system based on MBD-CFD method

  • Fan LIU ,
  • Xia HUANG ,
  • Shuai MA ,
  • Lu ZHANG ,
  • Xingda CUI ,
  • Xinbiao BAO
Expand
  • China Aerodynamics Research and Development Center,Mianyang  621000,China
E-mail: hx_1984.4@163.com

Received date: 2022-12-19

  Revised date: 2023-03-27

  Accepted date: 2023-04-17

  Online published: 2023-04-21

Supported by

National Natural Science Foundation of China(12102446)

摘要

随着无人加油等新兴应用场景的出现,软管-锥套式空中加油技术近年来重新得到了航空工业界的重点关注。使用计算机数值模拟手段对空中加油系统进行流体-动力学仿真,已成为空中加油系统设计、研发和飞行测试评估中的必备手段。一方面,基于工程简化模型的软管-锥套仿真方法的数值模拟精度难以满足实际需求,另一方面,完全基于非定常计算流体力学(CFD)的耦合仿真方法计算量较大,在有限计算资源条件下难以满足快速设计迭代与多参数优化的计算效率需求。通过将多个求解层次的流固耦合分析工具有机结合,建立了基于多体动力学(MBD)和CFD的加油机软管-锥套装置的耦合仿真框架和方法。对典型加油机-软管-锥套组合体的全尺寸构型和缩比构型进行了数值模拟,通过多个算例验证了本方法的可信性。通过将非定常CFD方法与基于气动建模的尾迹流场动态插值方法结合,可将后者的计算精度提高至与非定常CFD方法相当,同时将计算量减小2个数量级以上,从而实现了计算精度和效率的兼顾。

本文引用格式

刘钒 , 黄霞 , 马率 , 张露 , 崔兴达 , 鲍鑫彪 . 基于MBD-CFD的软管-锥套空中加油仿真框架[J]. 航空学报, 2023 , 44(20) : 628408 -628408 . DOI: 10.7527/S1000-6893.2023.28408

Abstract

Hose-drogue aerial refueling technology developed new applications including UAVs in recent years, leading to renewed research and investment. Simulation of aerial refueling systems with the numerical method has become indispensable in the design, development and flight test of the refueling system. However, the accuracy of engineering simplified models cannot meet the practical need. On the other hand, the coupling method based on the unsteady Computational Fluid Dynamics (CFD) method requires large amounts of computation resources and cannot satisfy fast design iteration and optimization. This study develops a new hose-drogue refueling simulation framework based on Multiple Body Dynamics (MBD) and CFD. Multiple validation examples are performed for the typical refueling system with full scale and scaling models. By combining the unsteady CFD, aerodynamic modeling method and time-based interpolation method, the current simulation method achieves the same accuracy with the unsteady CFD-MBD method while reducing computation resource to less than 1/100.

参考文献

1 THOMAS P R, BHANDARI U, BULLOCK S, et al. Advances in air to air refueling[J]. Progress in Aerospace Science201471:14-35.
2 SCHRAM J, REYLE S. A three-dimensional dynamic analysis of a towed system[J]. Journal of Hydronautics19682(4): 213-220.
3 VASSBERG J C, YEH D T, BLAIR A J, et al. Dynamic characteristics of a KC-10 wing-pod refueling hose by numerical simulation[C]∥20th AIAA Applied Aerodynamics Conference. 2002: 1-17.
4 ZHU Z H, MEGUID S A. Elastodynamic analysis of aerial refueling hose using curved beam element[J]. AIAA Journal200644(6): 1317-1324.
5 RO K, AHMAD H, KAMMAN J W. Dynamic modeling and simulation of hose-paradrogue assembly for mid-air operations[C]∥Umanned Unlimited Conference. 20091849: 1-14.
6 LEITNER R M, ESTRUGO R. Numeric simulation of aerial refueling coupling dynamics in case of hose reel malfunction[J]. Journal of Guidance, Control and Dynamics201033(1):53-63.
7 WANG H T, DONG X M, LIU J L, et al. Modeling and simulation for autonomous aerial refueling using a probe-drogue System[C]∥ AIAA Atmospheric Flight Mechanics Conference. 2015: 2015-2556.
8 刘钒,飞行器拖曳系统气动特性数值模拟研究[D]. 绵阳:中国空气动力研究与发展中心, 2014: 1-107
  LIU F. Numerical simulation study of aerodynamic characteristics of aerial towing system[D]. Mianyang: Chinese Aerodynamic Research and Development Center, 2014: 1-107 (in Chinese).
9 LIU F, LIU G, JIANG X. Simulation of aerial refueling system with multibody dynamics and CFD[J]. Acta Aerodynamica Sinica201634(2):276-272.
10 袁先旭, 陈坚强, 杜雁霞, 等. 国家数值风洞(NNW)工程中的CFD基础科学问题研究进展[J]. 航空学报202142(9): 625733.
  YUAN X X, CHEN J Q, DU Y X, et al. Research progress on fundamental CFD issues in National Numerical Windtunnel Project[J]. Acta Aeronautica et Astronautica Sinica202142(9): 625733 (in Chinese).
11 SHABANA A A. An absolute nodal coordinate formulation for the large rotation and large deformation analysis of flexible bodies[R]. Chicago: University of Illinois, 1996.
12 YOO W S, DMITROCHENKO O, POGORELOV D Y. Review of finite elements using absolute nodal coordinates for large-deformation problems and matching physical experiments[C]∥ ASME 2005 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference. 2005: 84720.
13 汤家力. 含时变柔索多体系统的建模与数值方法研究[D]. 北京:清华大学, 2008: 9-18.
  TANG J L. Numerical modeling and simulation research of time-varient multiple bodies system with cables[D]. Beijing: Tsinghua University, 2008: 9-18 (in Chinese).
14 洪迪锋. 一维移动介质的多体动力学建模方法研究[D]. 北京:清华大学, 2011.
  HONG D F. Multiple body dynamics modeling method study of one-dimensional moving material[D]. Beijing: Tsinghua University, 2011: 1-85 (in Chinese).
15 王海涛, 董新民. 空中加油动力学与控制[M]. 北京:国防工业出版社,2016.
  WANG H T, DONG X M. Aerial refueling dynamics and control[M]. Beijing: National Defense Industry Press, 2016 (in Chinese).
16 黄霞, 吴金华, 刘志涛, 等. 一种自适应变阻力稳定伞:中国, ZL202021174198.2 [P]. 2021-03-02.
  HUANG X, WU J H, LIU Z T, et al. An adaptive variable drag drogue: China, ZL202021174198.2[P]. 2021-03-02 (in Chinese).
17 吴金华, 黄霞, 刘志涛, 等. 自适应变阻稳定伞阻力特性及变形测量试验装置及方法:中国,ZL202010799898.9[P]. 2020-05-20.
  WU J H, HUANG X, LIU Z T, et al. Experimental device and method for measuring drag and deformation of adaptive variable drag drogue: China, ZL202010799898.9[P]. 2020-05-20 (in Chinese).
文章导航

/