论文

基于高阶谐波控制的倾转旋翼近场气动噪声主动控制试验

  • 马锦超 ,
  • 陆洋 ,
  • 王亮权 ,
  • 宋奎辉
展开
  • 1.无锡职业技术学院 机械工程分院,无锡 214121
    2.南京航空航天大学 直升机旋翼动力学重点实验室,南京 210016
    3.中国空气动力研究与发展中心 旋翼空气动力学重点实验室,绵阳 621000
.E-mail: luyang@nuaa.edu.cn

收稿日期: 2023-02-24

  修回日期: 2023-03-13

  录用日期: 2023-04-07

  网络出版日期: 2023-04-14

基金资助

中国空气动力研究与发展中心旋翼空气动力学重点实验室研究开放课题资助(RAL202103-3)

Active control test of tiltrotor near-field aeroacoustics based on higher harmonic control

  • Jinchao MA ,
  • Yang LU ,
  • Liangquan WANG ,
  • Kuihui SONG
Expand
  • 1.School of Mechanical Technology,Wuxi Institute of Technology,Wuxi  214121,China
    2.National Key Laboratory of Science and Technology on Rotorcraft Aero-Mechanics,Nanjing university of aeronautics and astronautics,Nanjing  210016,China
    3.Rotor Aerodynamics Key Laboratory,China Aerodynamics Research and Development Center,Mianyang  621000,China
E-mail: luyang@nuaa.edu.cn

Received date: 2023-02-24

  Revised date: 2023-03-13

  Accepted date: 2023-04-07

  Online published: 2023-04-14

Supported by

Open Research Topic of the Key Laboratory of Rotor Aerodynamics, China Aerodynamics Research and Development Center(RAL202103-3)

摘要

倾转旋翼飞行器的桨尖靠近机身,其近场气动噪声问题严重,理论研究表明,高阶谐波控制能够调整桨盘载荷分布,从而降低倾转旋翼对机身表面的气动噪声辐射。通过试验研究验证了高阶谐波控制(HHC)对倾转旋翼飞行器近场气动噪声的抑制效果。研制了一套用于模型倾转旋翼的HHC伺服控制系统,及倾转旋翼飞行器缩比机身模型;进一步在消声室环境下搭建了倾转旋翼飞行器近场气动噪声主动控制的HHC主动控制试验系统,开展了直升机模式下的噪声主动控制试验研究;验证了HHC对倾转旋翼飞行器近场气动噪声的主动控制效果。试验结果表明2 Ω的HHC控制输入的降噪效果最好,在直升机模式下,机身顶部观测点处的近场气动噪声最多可降低4.5 dB。

本文引用格式

马锦超 , 陆洋 , 王亮权 , 宋奎辉 . 基于高阶谐波控制的倾转旋翼近场气动噪声主动控制试验[J]. 航空学报, 2024 , 45(9) : 528602 -528602 . DOI: 10.7527/S1000-6893.2023.28602

Abstract

The proximity of tiltrotor aircraft blade tips to the fuselage causes a serious near-field aeroacoustics problem. Theoretical research shows that Higher Harmonic Control (HHC) input can adjust the load distribution of the rotor disc, thereby reducing the aeroacoustics radiation on the fuselage surface. In this paper, the suppression effect of HHC on near-field aeroacoustics in tiltrotor aircraft is verified experimentally. An HHC servo control system for model tiltrotor aircraft and a scaled fuselage model for tiltrotor aircraft are developed. An HHC active control test platform for near-field aeroacoustics in tiltrotor aircraft is further built in the anechoic chamber environment, and noise active control tests are carried out in helicopter mode. The active control effects of HHC on near-field aeroacoustics in tiltrotor aircraft are verified. The test results demonstrate that the 2 Ω HHC control input yields the best noise reduction performance. In helicopter mode, the near-field aeroacoustics at the observation point on the top of the fuselage can be reduced by up to 4.5 dB.

参考文献

1 吴希明, 牟晓伟. 直升机关键技术及未来发展与设想[J]. 空气动力学学报202139(3): 1-10.
  WU X M, MU X W. A perspective of the future development of key helicopter technologies[J]. Acta Aerodynamica Sinica202139(3): 1-10 (in Chinese).
2 邵扬杰, 刘莉, 曹潇, 等. 倾转旋翼无人机发展现状及关键技术概述[J]. 战术导弹技术2022(1): 12-20.
  SHAO Y J, LIU L, CAO X, et al. Research status and key technologies of tilt-rotor UAVs[J]. Tactical Missile Technology2022(1): 12-20 (in Chinese).
3 MARANO A D, POLITO T, GUIDA M, et al. Tiltrotor acoustic data acquisition and analysis[J]. Aerotecnica Missili & Spazio2021100(2): 111-122.
4 袁明川, 李尚斌, 江露生, 等. 悬停状态倾转旋翼噪声试验及数值计算[J]. 航空动力学报202136(3): 520-529.
  YUAN M C, LI S B, JIANG L S, et al. Acoustic test and numerical analysis of tilt rotor in hover[J]. Journal of Aerospace Power202136(3): 520-529 (in Chinese).
5 MILJKOVI? D. Methods for attenuation of unmanned aerial vehicle noise[C]∥2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). Piscataway: IEEE Press, 2018: 914-919.
6 JAMES S W, KISSINGER T, WEBER S, et al. Fibre-optic measurement of strain and shape on a helicopter rotor blade during a ground run: 1. Measurement of strain[J]. Smart Material Structures202231(7): 075014.
7 李文智, 曹瑶琴, 何志平. 基于材料及结构的直升机噪声抑制技术研究进展[J]. 航空材料学报202242(2): 1-10.
  LI W Z, CAO Y Q, HE Z P. Research progress of helicopter noise suppression technology based on materials/structures[J]. Journal of Aeronautical Materials202242(2): 1-10 (in Chinese).
8 MA J C, LU Y, SU T Y, et al. Experimental research of active vibration and noise control of electrically controlled rotor[J]. Chinese Journal of Aeronautics202134(11): 106-118.
9 VOUROS S, POLYZOS N D, GOULOS I, et al. Impact of optimized variable rotor speed and active blade twist control on helicopter blade–vortex interaction noise and environmental impact[J]. Journal of Fluids and Structures2021104: 103285.
10 SUN Y, XU G H, SHI Y J. Parametric effect of blade surface blowing on the reduction of rotor blade–vortex interaction noise[J]. Journal of Aerospace Engineering202235(1): 04021110.
11 PATEL T K, LILLEY A J, SHEN W Q, et al. Fundamental investigation using active plasma control to reduce blade–vortex interaction noise[J]. International Journal of Aeroacoustics202120(8): 870-900.
12 吴希明. 我国直升机外部噪声控制技术发展思路研究[J]. 直升机技术2014(3): 1-6.
  WU X M. Research on the development path of the helicopter external noise control technology in China[J]. Helicopter Technique2014(3): 1-6 (in Chinese).
13 DIETERICH O, ENENKL B, ROTH D. Trailing edge flaps for active rotor control-aeroelastic characteristics of the ADASYS rotor system[C]∥American Helicopter Society 62nd Annual Forum. West Palm Beach: AHS, 2006.
14 HAMMOND C E. Higher harmonic control: A historical perspective[J]. Journal of the American Helicopter Society202166(2): 1-14.
15 COLELLA M M, BERNADINI G, GENNARETTI M. Tiltrotor wing-root vibratory loads reduction through higher harmonic control actuation[J]. Journal of Aircraft201249(6): 1813-1820.
16 BETZINA M, NGUYEN K. Blade-pitch control for quieting tilt-rotor aircraft: 20110016662[R]. Washignton, D.C.: NASA, 2004.
17 陈丝雨, 招启军, 倪同兵, 等. 基于HHC方法的旋翼噪声抑制机理及参数影响[J]. 航空学报201738(10): 121000.
  CHEN S Y, ZHAO Q J, NI T B, et al. Rotor noise reduction mechanism and parameter analysis of HHC method[J]. Acta Aeronautica et Astronautica Sinica201738(10): 121000 (in Chinese).
18 GOPALAN G, SCHMITZ F H. Helicopter thickness noise reduction possibilities through active on-blade acoustic control[J]. Journal of Aircraft201047(1): 41-52.
19 贺祥, 史勇杰, 徐国华. 基于声压相消的旋翼厚度噪声控制机理[J]. 空气动力学学报201937(6): 893-900.
  HE X, SHI Y J, XU G H. Control mechanism of the thickness noise based on sound pressure cancellation[J]. Acta Aerodynamica Sinica201937(6): 893-900 (in Chinese).
20 XIA R Z, SHI Y J, LI T, et al. Numerical study of the rotor thickness noise reduction based on the concept of sound field cancellation[J]. Chinese Journal of Aeronautics202235(3): 214-233.
21 MA J C, LU Y, QIN Y F, et al. Tilt-rotor aircraft fuselage wall aeroacoustics radiation suppression using Higher harmonic control[J]. Applied Acoustics2022188: 108548.
22 FARASSAT F, SUCCI G P. A review of propeller discrete frequency noise prediction technology with emphasis on two current methods for time domain calculations[J]. Journal of Sound and Vibration198071(3): 399-419.
23 池骋, 陈仁良. 旋翼转速变化对直升机需用功率、配平、振动及噪声的影响分析[J]. 南京航空航天大学学报201850(5): 629-639.
  CHI C, CHEN R L. Influence of rotor speed variation on required power, trim, vibration and noise of helicopter[J]. Journal of Nanjing University of Aeronautics & Astronautics201850(5): 629-639 (in Chinese).
文章导航

/