材料工程与机械制造

含缺陷变刚度层合板屈曲性能的数值分析方法

  • 黄艳 ,
  • 王喆 ,
  • 陈普会
展开
  • 1.南京航空航天大学 机械结构力学及控制国家重点实验室,南京 210016
    2.北京航空航天大学 航空科学与工程学院,北京 100083
    3.中国飞机强度研究所 强度与结构完整性全国重点实验室,西安 710065
.E-mail: phchen@nuaa.edu.cn

收稿日期: 2023-02-17

  修回日期: 2023-03-21

  录用日期: 2023-04-12

  网络出版日期: 2023-04-14

基金资助

航空科学基金(2020Z055023002)

Numerical analysis method for buckling behavior of variable stiffness laminates with defects

  • Yan HUANG ,
  • Zhe WANG ,
  • Puhui CHEN
Expand
  • 1.State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
    2.School of Aeronautic Science and Engineering,Beihang University,Beijing 100083,China
    3.National Key Laboratory of Strength and Structural Integrity,Aircraft Strength Research Institute of China,Xi’an 710065,China
E-mail: phchen@nuaa.edu.cn

Received date: 2023-02-17

  Revised date: 2023-03-21

  Accepted date: 2023-04-12

  Online published: 2023-04-14

Supported by

Aeronautical Science Foundation of China(2020Z055023002)

摘要

为研究间隙与重叠缺陷对变刚度层合板屈曲性能的影响,首先采用缺陷占比表征局部区域内材料含缺陷的程度,基于代表性体积单元(RVE)提出了含缺陷材料的简化模型,建立了含缺陷材料性能的计算方法。其次采用二值图像法对有限元模型中的单元进行了缺陷定位与占比识别,结合提出的性能计算方法赋予不同单元不同的材料性能。最终通过该有限元模型计算了含缺陷层合板的屈曲性能,与试验结果的对比表明本文方法得到的屈曲性能与试验结果吻合良好,预测结果的误差在7%以内,验证了本文方法的有效性。同时本文方法的预测精度受网格尺寸影响较小,能有效降低计算成本。

本文引用格式

黄艳 , 王喆 , 陈普会 . 含缺陷变刚度层合板屈曲性能的数值分析方法[J]. 航空学报, 2023 , 44(24) : 428576 -428576 . DOI: 10.7527/S1000-6893.2023.28576

Abstract

To consider the effects of gaps and overlaps on the buckling performance of variable stiffness laminates, the defect proportion was used to characterize the degree of material defects in the local area at first. Then, a simplified model for the material with defects was proposed based on the Representative Volume Element (RVE), and a computational method for material properties considering defects was established. After that, the binary image method was used to identify the location and percentage of defects of the elements in the finite element model. Based on the computational method proposed, different elements were given different properties. Finally, the buckling performance was calculated by the finite element model. A comparison with the experimental results shows that the buckling performance obtained with the proposed method is in good agreement with the experimental results, and the accuracy of the prediction results is within 7%. In addition, the accuracy of the method is less affected by the mesh size, so the computational expense can be effectively reduced.

参考文献

1 RIBEIRO P, AKHAVAN H, TETER A, et al. A review on the mechanical behaviour of curvilinear fibre composite laminated panels[J]. Journal of Composite Materials201448(22): 2761-2777.
2 宋桂林, 王显峰, 赵聪, 等. 规则回转体自动铺丝轨迹规划与丝束增减[J]. 航空学报202041(11): 423704.
  SONG G L, WANG X F, ZHAO C, et al. Fiber placement trajectory planning and tows increase or decrease algorithm for revolution body[J]. Acta Aeronautica et Astronautica Sinica202041(11): 423704 (in Chinese).
3 孔斌, 顾杰斐, 陈普会, 等. 变刚度复合材料结构的设计、制造与分析[J]. 复合材料学报201734(10): 2121-2133.
  KONG B, GU J F, CHEN P H, et al. Design, manufacture and analysis of variable-stiffness composite structures[J]. Acta Materiae Compositae Sinica201734(10): 2121-2133 (in Chinese).
4 蔡立成, 彭啸, 汪海晋, 等. 铺放工艺参数对预浸料丝束曲线铺贴质量的影响[J]. 复合材料学报202138(6): 1795-1808.
  CAI L C, PENG X, WANG H J, et al. Influence of laying process parameters on curve trajectory placement quality of prepreg tow[J]. Acta Materiae Compositae Sinica202138(6): 1795-1808 (in Chinese).
5 靳子昂, 韩振宇, 项宇, 等. 变角度自动铺丝制造缺陷特性及影响因素的研究进展[J]. 机械工程学报202258(23): 164-177.
  JIN Z A, HAN Z Y, XIANG Y, et al. Research progress on defect characteristics and influencing factors of variable angle fiber placement[J]. Journal of Mechanical Engineering202258(23): 164-177 (in Chinese).
6 段沐枫, 秦田亮, 沈裕峰, 等. 自动铺丝最小间隙路径规划与复合材料锥壳结构制造[J]. 航空学报201940(2): 522423.
  DUAN M F, QIN T L, SHEN Y F, et al. Minimum gap layup algorithms for automatic fiber placement and manufacture of conic composite structure[J]. Acta Aeronautica et Astronautica Sinica201940(2): 522423 (in Chinese).
7 FAYAZBAKHSH K, PASINI D, LESSARD L, et al. Design and manufacturing of optimum variable stiffness laminates[C]∥ Proceedings of the 19th International Conference on Composite Materials (ICCM19). Montreal: Concordia Centre for Composites, 2013: FAY81186.
8 ARIAN NIK M, FAYAZBAKHSH K, PASINI D, et al. Optimization of variable stiffness composites with embedded defects induced by automated fiber placement[J]. Composite Structures2014107: 160-166.
9 JEGLEY D, TATTING B, GüRDAL Z. Optimization of elastically tailored tow-placed plates with holes[C]∥Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2003.
10 BLOM A W, LOPES C S, KROMWIJK P J, et al. A theoretical model to study the influence of tow-drop areas on the stiffness and strength of variable-stiffness laminates[J]. Journal of Composite Materials200943(5): 403-425.
11 杨竣博. 考虑工艺的复合材料层合结构变刚度铺层优化设计[D]. 西安: 西北工业大学, 2017: 57-62.
  YANG J B. Variable stiffness lay-up optimization of composite laminated structures[D]. Xi’an: Northwestern Polytechnical University, 2017: 57-62 (in Chinese).
12 钱金源, 赵筱彤, 王小平, 等. 变角度铺丝构件内嵌缺陷精确定位算法[J]. 宇航材料工艺202151(5): 72-78.
  QIAN J Y, ZHAO X T, WANG X P, et al. An algorithm for accurate location of embedded defects in variable angle fiber placement component[J]. Aerospace Materials & Technology202151(5): 72-78 (in Chinese).
13 WU C, GüRDAL Z, STARNES J. Structural response of compression-loaded, tow-placed, variable stiffness panels[C]∥ Proceedings of the 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2002.
14 居相文, 肖军, 王东立, 等. 考虑纤维面外起伏的变刚度层合板优化策略研究[J]. 复合材料学报202340(3): 1729-1739.
  JU X W, XIAO J, WANG D L, et al. Study on the optimization strategy of variable stiffness laminate considering out-of-plane fiber waviness[J]. Acta Materiae Compositae Sinica202340(3): 1729-1739 (in Chinese).
15 FAYAZBAKHSH K, ARIAN NIK M, PASINI D, et al. Defect layer method to capture effect of gaps and overlaps in variable stiffness laminates made by automated fiber placement[J]. Composite Structures201397: 245-251.
16 ARRANZ S, SOHOULI A, SULEMAN A. Buckling optimization of variable stiffness composite panels for curvilinear fibers and grid stiffeners[J]. Journal of Composites Science20215(12): 324.
17 CARVALHO J, SOHOULI A, SULEMAN A. Fundamental frequency optimization of variable angle tow laminates with embedded gap defects[J]. Journal of Composites Science20226(2): 64-83.
18 FALCó O, MAYUGO J A, LOPES C S, et al. Variable-stiffness composite panels: As-manufactured modeling and its influence on the failure behavior[J]. Composites Part B: Engineering201456: 660-669.
19 FALCó O, LOPES C S, NAYA F, et al. Modelling and simulation of tow-drop effects arising from the manufacturing of steered-fibre composites[J]. Composites Part A: Applied Science and Manufacturing201793: 59-71.
20 卫宇璇, 张明, 刘佳, 等. 基于自动铺放技术的变刚度复合材料层合板固化变形特性[J]. 复合材料学报202239(5): 2460-2469.
  WEI Y X, ZHANG M, LIU J, et al. Process-induced deformation characteristics of variable stiffness composite laminates based on automatic placement technology[J]. Acta Materiae Compositae Sinica202239(5): 2460-2469 (in Chinese).
21 CAO Z L, DONG M J, SHI Q H, et al. Research on buckling characteristics and placement processability of variable stiffness open-hole laminates[J]. Composites Part C: Open Access20227: 100233.
22 GüRDAL Z, OLMEDO R. In-plane response of laminates with spatially varying fiber orientations—Variable stiffness concept[J]. AIAA Journal199331(4): 751-758.
23 WALDHART C. Analysis of tow-placed, variable stiffness laminates[D]. Blacksburg: Virginia Poly-Technic Institute and State University, 1996: 62-76.
24 冉庆波, 肖鸿, 杨富鸿, 等. 含孔曲面自动铺丝轨迹规划算法[J]. 航空学报202243(9): 425602.
  RAN Q B, XIAO H, YANG F H, et al. Trajectory planning algorithm for automatic wire laying on perforated surface[J]. Acta Aeronautica et Astronautica Sinica202243(9): 425602 (in Chinese).
25 牛雪娟, 杨涛, 杜宇, 等. 变刚度纤维曲线铺放复合材料层合板的有限元建模和拉伸特性分析[J]. 宇航材料工艺201444(4): 19-24.
  NIU X J, YANG T, DU Y, et al. Finite element modeling and tensile properties analysis of curvelinear fiber-placed variable-stiffness composite laminates[J]. Aerospace Materials & Technology201444(4): 19-24 (in Chinese).
26 赵聪. 铺丝过程纤维面内屈曲机理及其对构件力学性能影响规律研究[D]. 南京: 南京航空航天大学, 2017: 87-88.
  ZHAO C. Formation mechanism of In-plane fiber waviness and its effect on performance of composites in automated fiber placement[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 87-88 (in Chinese).
27 张雅会, 陈普会, 孔斌. 变刚度复合材料平板与开孔板屈曲性能试验验证与数值仿真[J]. 复合材料学报202340(4): 2377-2389.
  ZHANG Y H, CHEN P H, KONG B. Experimental verification and numerical simulation of buckling behavior of variable stiffness composite plates and open-hole plates[J]. Acta Materiae Compositae Sinica202340(4): 2377-2389 (in Chinese).
28 顾杰斐, 陈普会, 孔斌, 等. 考虑制造因素的变刚度层合板的抗屈曲铺层优化设计[J]. 复合材料学报201835(4): 866-875.
  GU J F, CHEN P H, KONG B, et al. Layup optimization for maximum buckling load of variable-stiffness laminates considering manufacturing factors[J]. Acta Materiae Compositae Sinica201835(4): 866-875 (in Chinese).
29 MAROUENE A, BOUKHILI R, CHEN J, et al. Effects of gaps and overlaps on the buckling behavior of an optimally designed variable-stiffness composite lamina-tes—A numerical and experimental study[J]. Composite Structures2016140: 556-566.
30 XIA Z H, ZHOU C W, YONG Q L, et al. On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites[J]. International Journal of Solids and Structures200643(2): 266-278.
31 SUN C T, VAIDYA R S. Prediction of composite properties from a representative volume element[J]. Composites Science and Technology199656(2): 171-179.
32 李梦佳. Z-pin增强复合材料的力学性能研究[D]. 南京: 南京航空航天大学, 2019: 25-27.
  LI M J. Research on the mechanical properties of Z-pinned composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019: 25-27 (in Chinese).
33 刘振东, 郑锡涛, 范雯静, 等. 固化残余应力对无人机复合材料机翼强度的影响[J]. 航空学报202243(6): 526117.
  LIU Z D, ZHENG X T, FAN W J, et al. Effect of process-induced residual stress on strength of UAV composite wing[J]. Acta Aeronautica et Astronautica Sinica202243(6): 526117 (in Chinese).
34 潘光, 鲁江锋, 沈克纯. 复合材料圆柱壳体水下非线性屈曲数值分析[J]. 哈尔滨工程大学学报201536(9): 1159-1164.
  PAN G, LU J F, SHEN K C. Nonlinear numerical buckling analysis of composite underwater cylindrical shell[J]. Journal of Harbin Engineering University201536(9): 1159-1164 (in Chinese).
35 彭艺琳, 马玉娥, 赵阳, 等. 铝锂合金加筋壁板剪切屈曲性能[J]. 航空学报202041(11): 423729.
  PENG Y L, MA Y, ZHAO Y, et al. Shear buckling performance of Al-Li alloy stiffened panels[J]. Acta Aeronautica et Astronautica Sinica202041(11): 423729 (in Chinese).
36 ZHANG Y H, KONG B, GU J F, et al. Experimental investigation on the buckling and post-buckling behavior of variable stiffness laminates[J]. Thin-Walled Structures2023184: 110450.
37 LOPES C S, CAMANHO P P, GüRDAL Z, et al. Progressive failure analysis of tow-placed, variable-stiffness composite panels[J]. International Journal of Solids and Structures200744(25-26): 8493-8516.
文章导航

/