多孔壁面对高速边界层最优增长条带二次失稳的影响规律
收稿日期: 2023-02-01
修回日期: 2023-03-17
录用日期: 2023-04-06
网络出版日期: 2023-04-14
基金资助
国家自然科学基金(92052301)
Effects of porous wall on secondary instability of optimal growth streaks in high speed boundary layers
Received date: 2023-02-01
Revised date: 2023-03-17
Accepted date: 2023-04-06
Online published: 2023-04-14
Supported by
National Natural Science Foundation of China(92052301)
边界层转捩是高超声速飞行器设计中的关键基础理论问题。当环境扰动强度较高时,将在模态扰动失稳区上游发生由最优增长条带二次失稳触发的亚临界转捩。为评估多孔壁面在亚临界转捩中的控制效果,以超/高超声速平板边界层流动为研究对象,建立了基于伴随抛物化稳定性方程的优化系统与求解方法。以最优扰动非线性演化形成的三维条带边界层为新的基本流动开展全局稳定性分析,研究表明:多孔壁面对第一模态频率范围内的二次失稳扰动为促进作用,对第二模态频率范围内的二次失稳扰动起抑制作用,并且转折频率接近局部快/慢模态的同步频率,对于工程应用中多孔涂层的布置方案具有一定的指导意义。
王宇天 , 刘建新 , 王晓坤 , 李晓明 . 多孔壁面对高速边界层最优增长条带二次失稳的影响规律[J]. 航空学报, 2023 , 44(22) : 128519 -128519 . DOI: 10.7527/S1000-6893.2023.28519
Boundary layer transition is a key fundamental theoretical problem in the design of hypersonic vehicles. High intensity environmental disturbances leads to subcritical transition upstream of the mode instability region, triggered by secondary instability of optimal growth streaks. To assess the effect of the porous wall on the subcritical transition, this paper studies both super/hypersonic flat-plate boundary layer flows. Based on the adjoint parabolized stability equations, an optimization system as well as a numerical method is developed. The three-dimensional boundary layer flow with streaks resulted from the optimal disturbances of nonlinear evolution is used as the new base flow for the bi-global stability analysis. The result shows that, the secondary instability modes in the frequency range of the second modes are stabilized by the porous wall, while those in the frequency range of the first modes are destabilized, with the turning frequency close to the local synchronization frequency. Such regularity is helpful for the arrangement of porous coating in engineering applications.
1 | LEE C B, CHEN S Y. Recent progress in the study of transition in the hypersonic boundary layer[J]. National Science Review, 2019, 6(1): 155-170. |
2 | 段毅, 姚世勇, 李思怡, 等. 高超声速边界层转捩的若干问题及工程应用研究进展综述[J]. 空气动力学学报, 2020, 38(2): 391-403. |
DUAN Y, YAO S Y, LI S Y, et al. Review of progress in some issues and engineering application of hypersonic boundary layer transition[J]. Acta Aerodynamica Sinica, 2020, 38(2): 391-403 (in Chinese). | |
3 | 阎超. 航空CFD四十年的成就与困境[J]. 航空学报, 2022, 43(10): 526490. |
YAN C. Achievements and predicaments of CFD in aeronautics in past forty years[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 526490 (in Chinese). | |
4 | 陈坚强, 涂国华, 张毅锋, 等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报, 2017, 35(3): 311-337. |
CHEN J Q, TU G H, ZHANG Y F, et al. Hypersonic boundary layer transition: What we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3): 311-337 (in Chinese). | |
5 | TREFETHEN L N, TREFETHEN A E, REDDY S C, et al. Hydrodynamic stability without eigenvalues[J]. Science, 1993, 261(5121): 578-584. |
6 | LANDAHL M T. A note on an algebraic instability of inviscid parallel shear flows[J]. Journal of Fluid Mechanics, 1980, 98(2): 243-251. |
7 | ANDERSSON P, BERGGREN M, HENNINGSON D S. Optimal disturbances and bypass transition in boundary layers[J]. Physics of Fluids, 1999, 11(1): 134-150. |
8 | PAREDES P, CHOUDHARI M M, LI F, et al. Optimal growth in hypersonic boundary layers[J]. AIAA Journal, 2016, 54(10): 3050-3061. |
9 | RESHOTKO E, TUMIN A. Spatial theory of optimal disturbances in a circular pipe flow[J]. Physics of Fluids, 2001, 13(4): 991-996. |
10 | 李强, 赵磊, 陈苏宇, 等. 展向凹槽及泄流孔对高超声速平板边界层转捩影响的试验研究[J]. 物理学报, 2020, 69(2): 024703. |
LI Q, ZHAO L, CHEN S Y, et al. Experimental study on effect of transverse groove with/without discharge hole on hypersonic blunt flat-plate boundary layer transition[J]. Acta Physica Sinica, 2020, 69(2): 024703 (in Chinese). | |
11 | PAREDES P, CHOUDHARI M M, LI F. Blunt-body paradox and improved application of transient-growth framework[J]. AIAA Journal, 2018, 56(7): 2604-2614. |
12 | 陈苏宇, 江涛, 常雨, 等. 高超声速钝头体边界层转捩试验[J]. 航空学报, 2020, 41(12): 124098. |
CHEN S Y, JIANG T, CHANG Y, et al. Hypersonic boundary layer transition over bodies with blunt nosetip[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124098 (in Chinese). | |
13 | PAREDES P, CHOUDHARI M M, LI F, et al. Nose-tip bluntness effects on transition at hypersonic speeds[J]. Journal of Spacecraft and Rockets, 2019, 56(2): 369-387. |
14 | PAREDES P, CHOUDHARI M M, LI F. Mechanism for frustum transition over blunt cones at hypersonic speeds[J]. Journal of Fluid Mechanics, 2020, 894: A22. |
15 | 刘强, 涂国华, 罗振兵, 等. 延迟高超声速边界层转捩技术研究进展[J]. 航空学报, 2022, 43(7): 025357. |
LIU Q, TU G H, LUO Z B, et al. Progress in hypersonic boundary layer transition delay control[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 025357 (in Chinese). | |
16 | ZHAO R, WEN C, ZHOU Y, et al. Review of acoustic metasurfaces for hypersonic boundary layer stabilization[J]. Progress in Aerospace Sciences, 2022, 130: 100808. |
17 | ZHAO L, DONG M, YANG Y G. Harmonic linearized Navier-Stokes equation on describing the effect of surface roughness on hypersonic boundary-layer transition[J]. Physics of Fluids, 2019, 31(3): 034108. |
18 | WANG Y T, LI Y W, XIAO L H, et al. Similarity-solution-based improvement of γ-Reθt model for hypersonic transition prediction[J]. International Journal of Heat and Mass Transfer, 2018, 124: 491-503. |
19 | CHANG C L, MALIK M R. Oblique-mode breakdown and secondary instability in supersonic boundary layers[J]. Journal of Fluid Mechanics, 1994, 273: 323-360. |
20 | HANIFI A, SCHMID P J, HENNINGSON D S. Transient growth in compressible boundary layer flow[J]. Physics of Fluids, 1996, 8(3): 826-837. |
21 | TUMIN A, RESHOTKO E. Spatial theory of optimal disturbances in boundary layers[J]. Physics of Fluids, 2001, 13(7): 2097-2104. |
22 | TUMIN A, RESHOTKO E. Optimal disturbances in compressible boundary layers[J]. AIAA Journal, 2003, 41(12): 2357-2363. |
23 | TEMPELMANN D, HANIFI A, HENNINGSON D S. Spatial optimal growth in three-dimensional compressible boundary layers[J]. Journal of Fluid Mechanics, 2012, 704: 251-279. |
24 | ZUCCHER S, TUMIN A, RESHOTKO E. Parabolic approach to optimal perturbations in compressible boundary layers[J]. Journal of Fluid Mechanics, 2006, 556: 189-216. |
25 | FEDOROV A V, MALMUTH N D, RASHEED A, et al. Stabilization of hypersonic boundary layers by porous coatings[J]. AIAA Journal, 2001, 39(4): 605-610. |
26 | WARTEMANN V, LüDEKE H, SANDHAM N D. Numerical investigation of hypersonic boundary-layer stabilization by porous surfaces[J]. AIAA Journal, 2012, 50(6): 1281-1290. |
27 | LI X L, FU D X, MA Y W. Direct numerical simulation of hypersonic boundary layer transition over a blunt cone with a small angle of attack[J]. Physics of Fluids, 2010, 22(2): 025105. |
28 | WANG Y T, LI Y W, LIU J X, et al. On the receptivity of surface plasma actuation in high-speed boundary layers[J]. Physics of Fluids, 2020, 32(9): 094102. |
29 | SMITH F T. On the first-mode instability in subsonic, supersonic or hypersonic boundary layers[J]. Journal of Fluid Mechanics, 1989, 198: 127?153. |
30 | REN J E, FU S. Secondary instabilities of G?rtler vortices in high-speed boundary layer flows[J]. Journal of Fluid Mechanics, 2015, 781: 388-421. |
31 | ANDERSSON P, BRANDT L, BOTTARO A. On the breakdown of boundary layer streaks[J]. Journal of Fluid Mechanics, 2001, 428: 29-60. |
32 | FEDOROV A. Transition and stability of high-speed boundary layers[J]. Annual Review of Fluid Mechanics, 2011, 43: 79-95. |
33 | SONG R J, ZHAO L, HUANG Z F. Secondary instability of stationary G?rtler vortices originating from first/second Mack mode[J]. Physics of Fluids, 2020, 32(3): 034109. |
/
〈 |
|
〉 |