材料工程与机械制造

随位串联三坐标定位器定位精度建模与试验

  • 巴晓甫 ,
  • 薛红前 ,
  • 李西宁
展开
  • 1.西北工业大学 机电学院,西安 710072
    2.中航西安飞机工业集团股份有限公司 制造工程部,西安 710089
.E-mail: xuedang@nwpu.edu.cn

收稿日期: 2023-01-03

  修回日期: 2022-01-29

  录用日期: 2023-02-08

  网络出版日期: 2023-04-14

Modeling and test of positioning accuracy for positioner with 3-axis randomly position connected in series

  • Xiaofu BA ,
  • Hongqian XUE ,
  • Xining LI
Expand
  • 1.School of Mechatronic Engineering,Northwestern Polytechnical University,Xi’an 710072,China
    2.Department of Manufacturing Engineering,AVIC Xi’an Aircraft Industry Group Company Ltd. ,Xi’an 710089,China

Received date: 2023-01-03

  Revised date: 2022-01-29

  Accepted date: 2023-02-08

  Online published: 2023-04-14

摘要

飞机部件自动化装配一般通过多台三坐标定位器的并联驱动实现,针对三坐标定位器的重组效率和定位精度对飞机部件的装配效率和精度影响较大的问题,提出三坐标定位器的3个直线运动模块的随位串联模式,通过对三坐标定位器随位串联所含形位误差引起的运动学逆解误差进行分析,建立运动学逆解补偿模型。试验结果表明:随位串联三坐标定位器的实际定位精度达到了0.025~0.038 mm,满足新一代飞机部件装配对随位串联三坐标定位器的高精度要求。

本文引用格式

巴晓甫 , 薛红前 , 李西宁 . 随位串联三坐标定位器定位精度建模与试验[J]. 航空学报, 2023 , 44(19) : 428469 -428469 . DOI: 10.7527/S1000-6893.2023.28469

Abstract

The automatic assembly of aircraft components is generally realized by parallel drive of multiple 3-axis positioners. However, the reconfiguration efficiency and positioning accuracy of single 3-axis positioner have great influence on the assembly efficiency and accuracy of aircraft components. Based on the analysis of the kinematical reverse solution error caused by the geometric errors from positioner with 3-axis randomly position connected in series, positioner with 3-axis randomly position connected in series is designed, and the error compensation model of the kinematical reverse solution is established. The experiment results show that the actual positioning accuracy of positioner with 3-axis randomly positioned series connection is up to 0.025-0.038 mm, which meets the high precision requirements of the new generation aircraft component assembly.

参考文献

1 SCHWAKE K, WULFS J. Robot-based system for handling of aircraft shell parts[J]. Procedia CIRP201423: 104-109.
2 王皓, 陈根良. 机器人型装备在航空装备中的应用现状与研究展望[J]. 航空学报202243(5): 626128.
  WANG H, CHEN G L. Research progress and perspective of robotic equipment applied in aviation assembly[J]. Acta Aeronautica et Astronautica Sinica202243(5): 626128 (in Chinese).
3 潘国威, 陈文亮, 王珉, 等. 应用于飞机装配的并联机构技术发展综述[J]. 航空学报201940(1): 522572.
  PAN G W, CHEN W L, WANG M, et al. A review of parallel kinematic mechanism technology for aircraft assembly[J]. Acta Aeronautica et Astronautica Sinica201940(1): 522572 (in Chinese).
4 巴晓甫, 赵安安, 张程, 等. 智能快捷调姿定位系统位姿标定算法[J]. 航空制造技术202063(6): 57-63.
  BA X F, ZHAO A A, ZHANG C, et al. Intelligent calibration algorithm for the shortcut alignment and positioning system[J]. Aeronautical Manufacturing Technology202063(6): 57-63 (in Chinese).
5 MULLER R, ESSER M, VETTE M. Reconfigurable handling system as an enabler for large components in mass customized production[J]. Journal of Intelligent Manufacturing201324(5): 977-990.
6 余小光. 可移动数控定位器坐标标架快速标定方法研究[D]. 杭州: 浙江大学, 2016: 33-39.
  YU X G. Research on fast calibration for coordinate frame of numerical localizer[D]. Hangzhou: Zhejiang University, 2016: 33-39 (in Chinese).
7 罗中海, 孟祥磊, 巴晓甫, 等. 飞机大部件调姿平台力位混合控制系统设计[J]. 浙江大学学报(工学版)201549(2): 265-274.
  LUO Z H, MENG X L, BA X F, et al. Design on hybrid force position control of large aircraft components posture alignment platform[J]. Journal of Zhejiang University (Engineering Science)201549(2): 265-274 (in Chinese).
8 唐昌杰. 采用三坐标数控定位器调姿的大型飞机安全下架问题研究[D]. 杭州: 浙江大学, 2012: 15-16.
  TANG C J. Study on laree aircraft touching down safely using 3-axis positioners for attitude adjustment[D]. Hangzhou: Zhejiang University, 2012: 15-16 (in Chinese).
9 李晨, 方强, 李江雄. 基于三坐标定位器的大部件调姿机构误差分析[J]. 机电工程201027(3): 6-12.
  LI C, FAGN Q, LI J X. Error analysis of 3-axis locator based pose adjustment mechanism[J]. Journal of Mechanical & Electrical Engineering201027(3): 6-12 (in Chinese).
10 郭志敏, 蒋君侠, 柯映林. 一种精密三坐标POGO柱设计与精度研究[J]. 浙江大学学报(工学版)200943(9): 1649-1654.
  GUO Z M, JIANG J X, KE Y L. Design and accuracy for POGO stick with three-axis[J]. Journal of Zhejiang University (Engineering Science)200943(9): 1649-1654 (in Chinese).
11 程涛. 飞机装配中数控定位器的设计[J]. 机械管理开发2017137(3): 6-8.
  CHENG T. The design of NC positioner in the aircraft digital assembly[J]. Mechanical Management and Development2017137(3): 6-8 (in Chinese).
12 孙柯. 飞机大部件数控定位器的设计与静动态特性分析[D]. 汉中: 陕西理工学院, 2015: 11-13.
  SUN K. The design on the NC locator of the large aircraft component and the analysis of its static and dynamic characteristics[D]. Hanzhong: Shaanxi University of Technology, 2015: 11-13 (in Chinese).
13 赵剑波, 高峰, 岳义. 6-PPPS正交六自由度并联机构的姿态空间设计[J]. 中国机械工程200718(17): 2025-2028.
  ZHAO J B, GAO F, YUE Y. Orientation space design of 6-PPPS orthogonal 6-DOF parallel mechanism[J]. China Mechanical Engineering200718(17): 2025-2028 (in Chinese).
14 巴晓甫, 薛红前, 李西宁. 飞机部件调姿定位测量点的优选与构造算法[J]. 航空学报202243(5): 625514.
  BA X F, XUE H Q, LI X N. Optimization and construction algorithm of measuring points for digital attitude adjusting and positioning of aircraft components[J]. Acta Aeronautica et Astronautica Sinica202243(5): 625514 (in Chinese).
15 曲巍崴, 董辉跃, 柯映林. 机器人辅助飞机装配制孔中位姿精度补偿技术[J]. 航空学报201132(10): 1951-1960.
  QU W W, DONG H Y, KE Y L. Pose accuracy compensation technology in robot-aided aircraft assembly drilling process[J]. Acta Aeronautica et Astronautica Sinica201132(10): 1951-1960 (in Chinese).
16 NI Y B, ZHANG B, GUO W X, et al. Kinematic calibration of parallel manipulator with full-circle rotation[J]. Industrial Robot201643(3): 296-307.
17 CHENG L, WANG Q, LI J, et al. A posture evaluation method for a large component with thermal deformation and its application in aircraft assembly[J]. Assembly Automation201434(3): 275-284.
18 蒋君侠, 陈琪, 方强, 等. 三坐标定位器系统动态特性分析和实验[J]. 计算机集成制造系统200915(5): 1004-1009.
  JIANG J X, CHEN Q, FANG Q, et al. Analysis and experimental test on dynamic characteristic of 3-axis positioner system[J]. Computer Integrated Manufacturing Systems200915(5): 1004-1009 (in Chinese).
19 马政伟, 李卫东, 万敏, 等. 飞机侧壁部件装配调姿机构的设计与分析[J]. 北京航空航天大学学报201440(2): 280-284.
  MA Z W, LI W D, WAN M, et al. Design and analysis of flexible fixture for aircraft side panels[J]. Journal of Beijing University of Aeronautics and Astronautics201440(2): 280-284 (in Chinese).
20 田威, 程思渺, 李波, 等. 考虑关节回差的工业机器人精度补偿方法[J]. 航空学报202243(5): 625569.
  TIAN W, CHENG S M, LI B, et al. An error compensation method of an industrial robot with joint backlash[J]. Acta Aeronautica et Astronautica Sinica202243(5): 625569 (in Chinese).
21 HOU Y K, LI Y, ZHANG J, et al. A simple mechanical measurement system for the posture evaluation of wing components using the PSO and ICP algorithms[J]. Assembly Automation201535(1): 104-113.
22 NOBUYUKI I, TAKANORI K, KOICHI M. Simultaneous control of the motion and stiffness of redundant closed-loop link mechanisms with elastic elements[J]. Journal of Mechanical Science and Technology201024: 285-288.
23 ANTONIO M. Dynamic modeling of a Stewart platform using the generalized momentum approach[J]. Communication in Nonlinear Science and Numerical Simulation200914: 3389-3401.
24 BARKER L. Vector-algebra approach to extract Denavit-Hartenberg parameters of assembled robot arms: NASA TP 2912[R]. 1983.
25 KHALI W, IBRAHIM O. General solution for the dynamic modeling of parallel robots[J]. Journal of Intelligent and Robotic Systems200749: 19-37.
26 成大先. 机械设计大典[M]. 北京: 化学工业出版社, 2016: 2-223.
  CHENG D X. Handbook of mechanical design[M]. Beijing: Chemical Industry Press, 2016: 2-223 (in Chinese).
27 JIE M, LI K. Attitude measurement of aircraft based on laser tracker system[C]∥IEEE Control & Decision Conference. 2015: 4309-4314.
文章导航

/