基于离散伴随的高超内转式进气道气动优化设计

  • 王晓峰 ,
  • 屈峰 ,
  • 付俊杰 ,
  • 王泽宇 ,
  • 刘超宇 ,
  • 白俊强
展开
  • 1. 西北工业大学航空学院
    2. 西北工业大学

收稿日期: 2022-12-05

  修回日期: 2023-03-31

  网络出版日期: 2023-04-14

基金资助

国家自然科学基金

Discretized adjoint based aerodynamic design optimization for the hypersonic inward turning inlet

  • WANG Xiao-Feng ,
  • QU Feng ,
  • FU Jun-Jie ,
  • WANG Ze-Yu ,
  • LIU Chao-Yu ,
  • BAI Jun-Qiang
Expand

Received date: 2022-12-05

  Revised date: 2023-03-31

  Online published: 2023-04-14

摘要

内转式进气道拥有较好的来流捕获能力和较高的压缩效率,但此类进气道在初步设计时无法进行局部型面调节,难以改善激波/边界层干扰导致的流动分离、二次流等复杂流动结构对进气道性能造成的不利影响,仍具有较大的优化设计空间。目前,针对高超声速内转式进气道开展气动优化设计面临着型面复杂多变、设计变量规模较大、流场求解精度要求高等难题。为此,本文采用基于离散伴随的梯度类优化方法,针对带斜楔前体内转式进气道开展了气动优化设计。优化结果表明,进气道内外压缩段型面的起伏变化,显著改变了内部激波结构,减小了壁面压力梯度,进而弱化了流向涡;隔离段内激波串与附面层的干扰强度显著减弱,抑制了低能流区的扩张。相比初始构型,优化构型在设计工况下出口处的总压恢复系数提升8.748%,流量系数提升0.171%,增压比提升0.766%,阻力降低1.624%,进气道的气动性能得到了一定改善。

本文引用格式

王晓峰 , 屈峰 , 付俊杰 , 王泽宇 , 刘超宇 , 白俊强 . 基于离散伴随的高超内转式进气道气动优化设计[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2023.28352

Abstract

The inward turning inlet is with better inlet capture ability and higher air compression efficiency. However, this kind of inlet cannot be adjusted locally in the preliminary design, and it is difficult to improve the adverse effects of complex flow structures such as flow separation and secondary flow caused by shock/boundary layer interference. Therefore, there is still the large space for performance optimization. Nowadays, the design optimization of hypersonic inward turning inlet faces many challenges, such as the complex profile, large-scale design variables, and the high accuracy requirement of the flowfield numerical simulation. Therefore, this study adopts the gradient optimization method based on discrete adjoint to carry out the aerodynamic design optimization for the inward turning inlet with wedge forebody. The optimization results show that the undulating shape of the inner and outer compression sections significantly changes the internal shock structure, reduces the wall pressure gradient, and thereby abates the streamwise vortex. In addition, the interference intensity between the shock train and the boundary layer in the isolation section is significantly weakened, which inhibits the expansion of the low energy flow region. At the design condition, compared with the initial configuration, the aerodynamic performances of the optimized configuration are significantly improved. The total pressure recovery coefficient, the flow coefficient and the pressure ratio at the exit are increased by 8.748%, 0.171% and 0.766% respectively, and the drag is reduced by 1.624%.

参考文献

[1]王卫星, 朱婷, 张仁涛, 等.高超声速内转式进气道型面流场重构[J].航空学报, 2020, 41(03):183-192
[2]ZUO F Y, M?LDER S.Hypersonic wavecatcher intakes and variable-geometry turbine based combined cycle engines[J].Progress in Aerospace Sciences, 2019, 106:108-144
[3]李永洲.马赫数分布可控的高超声速内收缩进气道及其一体化设计研究[D]. 南京: 南京航空航天大学, 2014: 10-16
[4]尤延铖, 梁德旺, 郭荣伟, 等.高超声速三维内收缩式进气道乘波前体一体化设计研究评述[J].力学进展, 2009, 39(05):513-525
[5]乔文友, 余安远, 杨大伟, 等.基于前体激波的内转式进气道一体化设计[J].航空学报, 2018, 39(10):65-76
[6]DRAYNA T, NOMPELIS I, CANDLER G.Hypersonic inward turning inlets: design and optimization[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. 2006: 297
[7]SMART M K.Design of three-dimensional hypersonic inlets with rectangular-to-elliptical shape transition[J].Journal of Propulsion and Power, 1999, 15(3):408-416
[8]MOLDER S, TIMOFEEV E, TAHIR R.Flow starting in high compression hypersonic air inlets by mass spillage[C]//40th AIAA / ASME / SAE/ ASEE Joint Propulsion Conference and Exhibit. 2004: 4130
[9]李永洲, 张堃元, 张留欢.抽吸对高超声速内收缩进气道涡流区及起动性能的影响[J].航空动力学报, 2016, 31(07):1630-1637
[10]李宥晨.高超声速进气道扫掠激波/边界层干扰流动控制研究[D]. 南京: 南京航空航天大学, 2021: 65-87
[11]李程鸿, 谭慧俊, 孙姝, 等.流体式高超声速可调进气道流动机理及工作特性分析[J].宇航学报, 2011, 32(12):2613-2621
[12]张向洪, 伍贻兆, 王江峰.基于电子束电离的磁流体力学进气道流动控制数值模拟[J].航空动力学报, 2012, 27(06):1375-1383
[13]陈兵, 徐旭, 蔡国飙.基于遗传算法和空间推进方法的高超声速进气道优化设计研究[J].宇航学报, 2006(05): 1010-1015+1101
[14]王昌盛, 额日其太, 丁文豪.高超声速轴对称进气道多目标优化设计[J].航空动力学报, 2020, 35(07):1392-1401
[15]王骥飞, 蔡晋生, 段焰辉.高超声速内收缩进气道分步优化设计方法[J].航空学报, 2015, 36(12):3759-3773
[16]高琨鹏, 陈兵, 徐旭.基于算法的高超声速内转式进气道优化设计[J].推进技术, 2017, 38(05):998-1007
[17]南向军.压升规律可控的高超声速内收缩进气道设计方法研究[D]. 南京: 南京航空航天大学, 2012: 108-115
[18]KEANE A J, VOUTCHKOV I I.Surrogate approaches for aerodynamic section performance modeling[J].AIAA Journal, 2020, 58(1):16-24
[19]ONG Y S, NAIR P B, KEANE A J.Evolutionary optimization of computationally expensive problems via surrogate modeling[J].AIAA journal, 2003, 41(4):687-696
[20]ZINGG D W, NEMEC M, PULLIAM T H.A comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimization[J].European Journal of Computational MechanicsRevue Européenne de Mécanique Numérique, 2008, 17(1-2):103-126
[21]HOUCK C R, JOINES J, KAY M G.A genetic algorithm for function optimization: a Matlab implementation[J].Ncsu-ie tr, 1995, 95(09):1-10
[22]SEVANT N E, BLOOR M I G, WILSON M J.Aerodynamic design of a flying wing using response surface methodology[J].Journal of Aircraft, 2000, 37(4):562-569
[23]JAMESON A.Aerodynamic shape optimization using the adjoint method[J]. Lectures at the Von Karman Institute, Brussels, 2003
[24]NADARAJAH S, JAMESON A.A comparison of the continuous and discrete adjoint approach to automatic aerodynamic optimization[C]//38th Aerospace Sciences Meeting and Exhibit. 2000: 667
[25]高昌, 张小庆, 贺元元, 等.连续伴随方法在二维高超声速进气道优化中的应用[J].空气动力学学报, 2020, 38(01):21-26
[26]KLINE H L, PALACIOS F, ECONOMON T D, et al.Adjoint-based optimization of a hypersonic inlet[C]//22nd AIAA Computational Fluid Dynamics Conference. 2015: 3060
[27]刘超宇, 屈峰, 孙迪, 等.基于离散伴随的高超声速密切锥乘波体气动优化设计[J/OL]. 航空学报, (2022-01-11)[2022-12-02]. http://kns.cnki.net/kcms/detail/11.1929.V.20220111.1647.020.html
[28]陈颂.基于梯度的气动外形优化设计方法及应用[D]. 西安: 西北工业大学, 2016: 49-69
[29]MARTA A C, MADER C A, MARTINS J, et al.A methodology for the development of discrete adjoint solvers using automatic differentiation tools[J].International Journal of Computational Fluid Dynamics, 2007, 21(9-10):307-327
[30]SPALART P, ALLMARAS S.A one-equation turbulence model for aerodynamic flows[C]//30th aerospace sciences meeting and exhibit. 1992: 439
[31]JAMESON A, YOON S.Lower-upper implicit schemes with multiple grids for the Euler equations[J].AIAA journal, 1987, 25(7):929-935
[32]GROPP W, KEYES D, MCINNES L C, et al.Globalized Newton-Krylov-Schwarz algorithms and software for parallel implicit CFD[J].The International Journal of High Performance Computing Applications, 2000, 14(2):102-136
[33]SEDERBERG T W, PARRY S R.Free-form deformation of solid geometric models[C]//Proceedings of the 13th annual conference on Computer graphics and interactive techniques. 1986: 151-160
[34]LUKE E, COLLINS E, BLADES E.A fast mesh deformation method using explicit interpolation[J].Journal of Computational Physics, 2012, 231(2):586-601
[35]GILL P E, MURRAY W, SAUNDERS M A.SNOPT: An SQP algorithm for large-scale constrained optimization[J].SIAM review, 2005, 47(1):99-131
[36]PUYERO A, ZINGG D, PUYERO A, et al.An efficient Newton-GMRES solver for aerodynamic computations[C]//13th Computational Fluid Dynamics Conference. 1997: 1955
[37]董昊, 耿玺, 程克明, 等.高超声速内收缩进气道设计与优化[M]. 北京: 科学出版社, 2018: 37-40
[38]周永易.高超声速进气道中流向涡的生成流场及演化特性研究[D]. 长沙: 国防科技大学, 2019: 68-69
[39]何刚, 赵玉新, 周进.等熵侧压诱导的超声速平板边界层二次流研究[J].推进技术, 2016, 37(09):1624-1630
[40]张航, 谭慧俊, 孙姝.进口斜激波、膨胀波干扰下等直隔离段内的激波串特性[J].航空学报, 2010, 31(09):1733-1739
[41]丁猛, 李桦, 范晓樯.等截面隔离段中激波串结构的数值模拟[J].国防科技大学学报, 2001, (01):15-18
文章导航

/