论文

BWB飞机水上迫降运动特性数值研究

  • 郑云隆 ,
  • 刘沛清 ,
  • 屈秋林 ,
  • 戴佳骅 ,
  • 田逾
展开
  • 北京航空航天大学 航空科学与工程学院,北京 100191
.E-mail: qql@buaa.edu.cn

收稿日期: 2023-02-21

  修回日期: 2023-03-30

  录用日期: 2023-04-06

  网络出版日期: 2023-04-11

基金资助

国家自然科学基金(12072014)

Numerical investigation on motion characteristics of BWB aircraft in ditching

  • Yunlong ZHENG ,
  • Peiqing LIU ,
  • Qiulin QU ,
  • Jiahua DAI ,
  • Yu TIAN
Expand
  • School of Aeronautic Science and Engineering,Beihang University,Beijing 100191,China
E-mail: qql@buaa.edu.cn

Received date: 2023-02-21

  Revised date: 2023-03-30

  Accepted date: 2023-04-06

  Online published: 2023-04-11

Supported by

National Natural Science Foundation of China(12072014)

摘要

翼身融合(BWB)布局是未来民航客机的重要布局形式之一。采用数值模拟方法研究固定下滑角条件下初始迫降速度和俯仰角对BWB飞机水上迫降过程中运动特性的影响规律。采用有限体积法数值求解非定常RANS方程,流体体积分数法捕捉水气交界面,刚体六自由度模型实现飞机受力与运动的耦合,整体动网格方法实现飞机与水面的相对运动。在初始迫降水平速度-俯仰角相平面内,BWB飞机在水上迫降过程中存在稳定运动、海豚运动和跳跃运动3种形式。随着初始迫降速度或俯仰角的增加,飞机逐渐由稳定运动过渡到海豚运动,最终到跳跃运动。当初始迫降水平速度增加时,冲击形成的正压区和浸没滑行形成的负压区的压力绝对值和范围增加,当正、负压区分别位于重心前后时,两者共同导致抬头力矩峰值;当初始迫降垂向速度增加时,飞机入水后回弹到较高的位置;当初始迫降俯仰角增加时,飞机初始重心位置升高,同时迫降初期浸润面积增加变缓,两者共同导致飞机入水深度增加,水线前移。

本文引用格式

郑云隆 , 刘沛清 , 屈秋林 , 戴佳骅 , 田逾 . BWB飞机水上迫降运动特性数值研究[J]. 航空学报, 2023 , 44(21) : 528588 -528588 . DOI: 10.7527/S1000-6893.2023.28588

Abstract

Blended Wing Body (BWB) layout is one of the important layouts for future civil aircraft. The influence of initial speed and pitch angle on the motion characteristics of BWB aircraft during ditching at a fixed glide angle is studied by numerical simulation. The finite volume method is used to solve the unsteady RANS equations, the volume of fluid method is used to capture the water-air interface, the rigid body six-degree-of-freedom model is adopted to couple the force and motion of the aircraft, and the global moving mesh method is applied to realize the relative motion between the aircraft and the water surface. In the phase plane of the initial ditching horizontal speed and pitch angle, three forms of motion for BWB aircraft are observed during the process of ditching: stable motion, porpoising motion, and skipping motion. With the increase of initial ditching speed or pitch angle, the aircraft gradually transitions from stable motion to porpoising motion and finally to skipping motion. When the initial ditching horizontal speed increases, the absolute value and range of the pressure in the positive pressure zone formed by the impact and the negative pressure zone formed by the hydroplaning increase. When the positive and negative pressure zones are located before and after the center of gravity, respectively, they jointly lead to a pitch-up moment peak. When the initial ditching vertical speed increases, the aircraft rebounds to a higher position after water entry. When the initial ditching pitch angle increases, the initial center of gravity position rises, and the growth of wetted area at the initial stage in ditching slows down, both jointly leading to an increase in water entry depth and a forward movement of the waterline.

参考文献

1 刘沛清, 屈秋林, 郭保东, 等. 数值计算技术在飞机水上迫降中的应用[J]. 力学与实践201436(3): 278-284.
  LIU P Q, QU Q L, GUO B D, et al. Application of computational fluid dynamics in the planned ditching of a transport airplane[J]. Mechanics in Engineering201436(3): 278-284 (in Chinese).
2 屈秋林, 刘沛清, 郭保东, 等. 某型客机水上迫降的着水冲击力学性能数值研究[J]. 民用飞机设计与研究2009(): 64-69.
  QU Q L, LIU P Q, GUO B D, et al. Numerical study on the mechanical properties of landing impact of a passenger plane in water landing[J]. Civil Aircraft Design and Research2009(Sup 1): 64-69 (in Chinese).
3 中国民用航空局. 中国民用航空规章 第25部: 运输类飞机适航标准: CCAR-25-R4 [S]. 2011.
  Civil Aviation Administration of China. Civil aviation regulations of the People’s Republic of China, Part 25: Airworthiness standards for transport aircraft: CCAR-25-R4 [S]. 2011 (in Chinses).
4 朱自强, 王晓璐, 吴宗成, 等. 民机的一种新型布局形式: 翼身融合体飞机[J]. 航空学报200829(1): 49-59.
  ZHU Z Q, WANG X L, WU Z C, et al. A new type of transport-blended wing body aircraft[J]. Acta Aeronautica et Astronautica Sinica200829(1): 49-59 (in Chinese).
5 OKONKWO P, SMITH H. Review of evolving trends in blended wing body aircraft design[J]. Progress in Aerospace Sciences201682: 1-23.
6 童明波, 陈吉昌, 李乐, 等. 飞行器水载荷结构完整性数值模拟现状与展望-Part I:水上迫降和水上漂浮[J]. 航空学报202142(5): 524530.
  TONG M B, CHEN J C, LI L, et al. State of the art and perspectives of numerical simulation of aircraft structural integrity from hydrodynamics-Part I: Ditching and floating[J]. Acta Aeronautica et Astronautica Sinica202142(5): 524530 (in Chinese).
7 郭保东, 屈秋林, 刘沛清, 等. 混合翼身布局客机SAX-40水上迫降力学性能数值研究[J]. 航空学报201334(11): 2443-2451.
  GUO B D, QU Q L, LIU P Q, et al. Ditching performance of silent aircraft SAX-40 in hybrid wing-body configuration[J]. Acta Aeronautica et Astronautica Sinica201334(11): 2443-2451 (in Chinese).
8 STURM R, HEPPERLE M. Crashworthiness and ditching behaviour of blended-wing-body (BWB) aircraft design[J]. International Journal of Crashworthiness201520(6): 592-601.
9 ZHENG Y L, QU Q L, LIU P Q, et al. Numerical analysis of the porpoising motion of a blended wing body aircraft during ditching[J]. Aerospace Science and Technology2021119: 107131.
10 褚林塘. 水上飞机水动力设计[M]. 北京: 航空工业出版社, 2014.
  CHU L T. Seaplane hydrodynamic design[M]. Beijing: Aviation Industry Press, 2014 (in Chinese).
11 DUAN X P, SUN W P, CHEN C, et al. Numerical investigation of the porpoising motion of a seaplane planing on water with high speeds[J]. Aerospace Science and Technology201984: 980-994.
12 黄淼, 褚林塘, 李成华, 等. 大型水陆两栖飞机抗浪能力研究[J]. 航空学报201940(1): 522335.
  HUANG M, CHU L T, LI C H, et al. Seakeeping performance research of large amphibious aircraft[J]. Acta Aeronautica et Astronautica Sinica201940(1): 522335 (in Chinese).
13 ZHENG Y L, LIU P Q, QU Q L, et al. Numerical analysis of porpoising stability limit of a blended-wing-body aircraft during ditching[J]. Journal of Aircraft202360(2): 348-354.
14 FISHER L J, HOFFMAN E L. Ditching investigations of dynamic models and effects of design parameters on ditching characteristics: NACA-TN-3946[R]. Washington D.C.: NACA, 1957.
15 PARKINSON J B. Notes on the skipping of seaplanes: NACA-RB-3127[R]. Washington D.C.: NACA, 1943.
16 MCBRIDE E E, FISHER L J. Experimental investigation of the effect of rear-fuselage shape on ditching behavior: NACA-TN-2929[R]. Washington D.C.: NACA, 1953.
17 LIEBECK R H. Design of the blended wing body subsonic transport[J]. Journal of Aircraft200441(1): 10-25.
18 GUO B D, LIU P Q, QU Q L, et al. Turbulence models performance assessment for pressure prediction during cylinder water entry[J]. Applied Mechanics and Materials2012224: 225-229.
19 SNYDER D O, KOUTSAVDIS E K, ANTTONEN J S R. Transonic store separation using unstructured CFD with dynamic meshing: AIAA-2003-3919[R]. Reston: AIAA, 2003.
20 YETTOU E M, DESROCHERS A, CHAMPOUX Y. Experimental study on the water impact of a symmetrical wedge[J]. Fluid Dynamics Research200638(1): 47-66.
21 LIN M C, SHIEH L D. Flow visualization and pressure characteristics of a cylinder for water impact[J]. Applied Ocean Research199719(2): 101-112.
22 GUO B D, LIU P Q, QU Q L, et al. Effect of pitch angle on initial stage of a transport airplane ditching[J]. Chinese Journal of Aeronautics201326(1): 17-26.
23 ZHANG X, LIU P Q, QU Q L, et al. Numerical analysis of the pressure peak position shift with deadrise angle in two-dimensional wedge water entry[J]. Journal of Fluids Engineering2018140(11): 111101.
24 QU Q L, HU M X, GUO H, et al. Study of ditching characteristics of transport aircraft by global moving mesh method[J]. Journal of Aircraft201552(5): 1550-1558.
25 QU Q L, WANG R, GUO H, et al. Numerical study of water impact of an elastic cylindrical shell[J]. AIAA Journal201654(10): 3296-3303.
26 ZHANG X, LIU P Q, QU Q L, et al. Effects of Froude number and geometry on water entry of a 2-D ellipse[J]. Journal of Hydrodynamics201830(4): 738-749.
27 付晓琴, 李阳辉, 卢昱锦, 等. 二维平板水漂运动数值模拟[J]. 航空学报202142(6): 124351.
  FU X Q, LI Y H, LU Y J, et al. Numerical simulation of two-dimensional plate skipping[J]. Acta Aeronautica et Astronautica Sinica202142(6): 124351 (in Chinese).
28 卢昱锦, 肖天航, 李正洲. 高速平板着水数值模拟[J]. 航空学报201738(S1): 721498.
  LU Y J, XIAO T H, LI Z Z. Numerical simulation of high speed plate ditching[J]. Acta Aeronautica et Astronautica Sinica201738(S1): 721498 (in Chinese).
29 SMITH A G, WHITE H G. A review of porpoising instability of seaplanes: 2852[R]. London: Aeronautical Research Council, 1954.
30 IAFRATI A. Experimental investigation of the water entry of a rectangular plate at high horizontal velocity[J]. Journal of Fluid Mechanics2016799: 637-672.
文章导航

/