[1] 杨伟. 关于未来战斗机发展的若干讨论 [J]. 航空学报, 2020, 41(06): 8-19.
YANG W. Development of future fighters [J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(06): 8-19. (in Chinese)
[2] TIRPAK J A. Air force creates new PEO for NGAD, applying "Digital Century Series" idea [EB/OL]. (2019-10-14)[2022-10-20]. http://airforcemag.com/Features/ Pag-es/2019/October%202019/Air-Force-Creates-New-PEO-for-NGAD-Applying-Digital-Century-Series-Idea.aspx .
[3] 曲东才. 战斗机过失速机动与近距格斗空战 [J]. 航空兵器, 2000, (04): 12-4.
QU D C. Fighter overstall maneuvers and close-range combat air combat [J]. Aero Weaponry, 2000, (04): 12-4. (in Chinese)
[4] 史忠科. 高性能飞机发展对控制理论的挑战 [J]. 航空学报, 2015, 36(08): 2717-34.
SHI Z K. Challenge of control theory in the presence of high performance aircraft development [J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(08): 2717-34. (in Chinese)
[5] HERBST W B. Future fighter technologies [J]. Journal of Aircraft, 1980, 17(8): 561-6.
[6] 王海峰, 展京霞, 陈科, 等. 战斗机大迎角气动特性研究技术的发展与应用 [J]. 空气动力学学报, 2022, 40(01): 1-25.
WANG H F, ZHAN J X, CHEN K, et al. Development and application of aerodynamic research technologies for fighters at high angle of attack [J]. Acta Aerody-namica Sinca, 2022, 40(01): 1-25. (in Chinese)
[7] 张子军, 赵彤, 孙烨, 等. 飞机大迎角飞行问题研究综述 [J]. 航空工程进展, 2022, 13(03): 74-85.
ZHANG Z, ZHAO T, SUN Y, et al. Review of the Study on High-angle-of-attack Flight Problems of Air-craft [J]. Advances in Aeronautical Science and Engi-neering, 2022, 13(03): 74-85. (in Chinese)
[8] 肖志祥, 崔文瑶, 刘健, 等. 新一代战斗机非定常流动数值研究综述 [J]. 航空学报, 2020, 41(06): 71-86.
XIAO Z X, CUI W Y, LIU J, et al. Review of numeri-cal research on unsteady flows of the new generation fighters [J], Acta Aeronautica et Astronautica Sinica, 2020, 41(06): 71-86. (in Chinese)
[9] 汪清, 钱炜祺, 丁娣. 飞机大迎角非定常气动力建模研究进展 [J]. 航空学报, 2016, 37(08): 2331-47.
WANG Q, QIAN W Q, DING D, A review of unsteady aerodynamic modeling of aircrafts at high angles of attack [J], Acta Aeronautica et Astronautica Sinica, 2016, 37(08): 2331-47. (in Chinese)
[10] Kalviste J. Use of rotary balance and forced oscilla-tion test data in six degrees of freedom simula-tion[C]//9th Atmospheric Flight Mechanics Confer-ence. 1982: 1364.
[11] 饶秋磊, 韩意新. 大迎角气动力建模与失速/尾旋模态仿真 [J]. 应用力学学报, 2018, 35(03): 472-8+683.
RAO Q L, HAN Y X. High angle of attack aerody-namic modeling and simulation and analysis of stall/spin mode [J]. Chinese Journal of Applied Me-chanics, 2018, 35(03): 472-8+683. (in Chinese)
[12] 李林刚, 高浩. 飞机大迎角气动数据的组成与应用 [J]. 飞行力学, 1997, (01): 1-7.
LI L G, GAO H. Aero Datas Integration and Applica-tion of the Airplane at High Angle of Attack [J]. Fight Dynamics, 1997, (01): 1-7. (in Chinese)
[13] MURCH A, FOSTER J. Recent NASA research on aerodynamic modeling of post-stall and spin dynam-ics of large transport airplanes[C]//45th AIAA aero-space sciences meeting and exhibit. 2007: 463.
[14] BRYAN G H, WILLIAMS W E. "The longitudinal stability of aerial gliders." [J]. Proceedings of the Roy-al Society of London, 1904, 73(489): 100-16.
[15] LIN G F, LAN C, BRANDON J, et al. A general-ized dynamic aerodynamic coefficient model for flight dynamics applications[C]//22nd Atmospheric Flight Mechanics Conference. 1997: 3643.
[16] TOBAK M. On the use of the indicial-function con-cept in the analysis of unsteady motions of wings and wing-tail combinations [R], 1954.
[17] GOMAN M, KHRABROV A. State-space representa-tion of aerodynamic characteristics of an aircraft at high angles of attack [J]. Journal of Aircraft, 1994, 31(5): 1109-15.
[18] 汪清, 蔡金狮. 飞机大攻角非定常气动力建模与辨识 [J]. 航空学报, 1996, (04): 391-8.
WANG Q, CAI J S. Unsteady aerodynamic modeling and identification of airplane at high angles of attack [J]. Acta Aeronautica et Astronautica Sinica, 1996, (04): 391-8. (in Chinese)
[19] 沈霖, 黄达, 吴根兴, 等. 战斗机大迎角非定常气动力建模 [J]. 航空学报, 2020, 41(06): 193-210.
SHEN L, HUANG D, WU G X, et al. Unsteady aero-dynamic modeling for fighter configuration at high angles of attack [J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(06): 193-210. (in Chinese)
[20] SHEN L, HUANG D, WU G. Time delay compensa-tion in lateral-directional flight control systems at high angles of attack [J]. Chinese Journal of Aeronautics, 2021, 34(4): 1-18.
[21] 岑飞, 李清, 刘志涛, 等. 民机极限飞行状态的动态气动力试验与建模 [J]. 航空学报, 2020, 41(08): 226-37.
GEN F, LI Q, Liu Z T, et al. Unsteady aerodynamics test and modeling of civil aircraft under extreme flight conditions [J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(08): 226-37. (in Chinese)
[22] 岑飞, 刘志涛, 蒋永, 等. 民机极限飞行状态非定常气动力建模 [J]. 航空学报, 2022, 43(08): 382-93.
GEN F, LIU Z T, JIANG Yong, et al. Unsteady aero-dynamics modeling of civil transport configuration under extreme flight conditions [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(08): 382-93. (in Chi-nese)
[23] KOU J, ZHANG W. Data-driven modeling for un-steady aerodynamics and aeroelasticity [J]. Progress in Aerospace Sciences, 2021, 125.
[24] 史志伟, 王峥华, 李俊成. 径向基神经网络在非线性非定常气动力建模中的应用研究 [J]. 空气动力学学报, 2012, 30(01): 108-12+19.
SHI Z W, WANG Z H, LI J C. The research of RBFNN in modeling of nonlinear unsteady aerodynamics [J]. Acta Aeronautica et Astronautica Sinica, 2012, 30(01): 108-12+19. (in Chinese)
[25] ZHANG W W, WANG B, YE Z, et al. Efficient Meth-od for Limit Cycle Flutter Analysis Based on Nonline-ar Aerodynamic Reduced-Order Models [J]. AIAA Journal, 2012, 50(5): 1019-28.
[26] GHOREYSHI M, JIRáSEK A, CUMMINGS R M. Computational approximation of nonlinear unsteady aerodynamics using an aerodynamic model hierarchy [J]. Aerospace Science and Technology, 2013, 28(1): 133-44.
[27] LI W, LAIMA S, JIN X, et al. A novel long short-term memory neural-network-based self-excited force model of limit cycle oscillations of nonlinear flutter for various aerodynamic configurations [J]. Nonline-ar Dynamics, 2020, 100(3): 2071-87.
[28] LI K, KOU J, ZHANG W W. Deep neural network for unsteady aerodynamic and aeroelastic modeling across multiple Mach numbers [J]. Nonlinear Dynam-ics, 2019, 96(3): 2157-77.
[29] BAGHERZADEH S A. Nonlinear aircraft system iden-tification using artificial neural networks enhanced by empirical mode decomposition [J]. Aerospace Science and Technology, 2018, 75: 155-71.
[30] LYU Y, CAO Y, ZHANG W, et al. Dynamic surface control design of post-stall maneuver under unsteady aerodynamics [J]. Aerospace Science and Technology, 2018, 80: 269-80.
[31] GREENWELL D. A review of unsteady aerodynamic modelling for flight dynamics of manoeuvrable air-craft[C]//AIAA atmospheric flight mechanics confer-ence and exhibit. 2004: 5276.
[32] 李仑, 王刚, 索谦, 等. 飞行器阵风响应的CFD-6DOF仿真分析 [J]. 航空工程进展, 2015, 6(01): 26-31.
LI L, WANG G, SUO Q, et al. CFD-6DOF simulation analysis of aircraft gust response [J]. advances in aer-onautical science and engineering, 2015, 6(01): 26-31. (in Chinese)
[33] 王培涵, 吴志刚, 杨超, 等. 一种适用于弹性飞机飞行仿真的补丁方法 [J/OL]. 航空学报.
WANG P H, WU Z G, YANG C, et al. Flight simulation of flexible aircrafts with a method of patch module [J/OL]. Acta Aeronautica et Astronautica Sinica. (in Chinese)
[34] 王刚, 邢宇, 朱亚楠. 旋转弹气动力建模与飞行轨迹仿真 [J]. 航空学报, 2017, 38(01): 108-17.
WANG G, XING Y, ZHU Y N. Aerodynamic modeling and flight trajectory simulation of spinning projectile [J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(01): 108-17. (in Chinese)
[35] 师妍, 万志强, 吴志刚, 等. 基于气动力降阶的弹性飞机阵风响应仿真分析及验证 [J]. 航空学报, 2022, 43(01): 335-54.
SHI Y, WANG Z Q, WU Z G, et al. Gust response analysis and verification of elastic aircraft based on nonlinear aerodynamic reduced-order model [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(01): 335-54. (in Chinese)
[36] BRYAN G H, WILLIAMS W E. The longitudinal sta-bility of aerial gliders [J]. Proceedings of the Royal Society of London, 1904, 73(488): 100-16.
[37] WANG X, KOU J, ZHANG W W. Unsteady aerody-namic modeling based on fuzzy scalar radial basis function neural networks [J]. Proceedings of the Insti-tution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(14): 5107-21.
[38] ZHANG W, GUO X, WANG C, et al. A pod-based center selection for RBF neural network in time series prediction problems[C]//International Conference on Adaptive and Natural Computing Algorithms. Springer, Berlin, Heidelberg, 2007: 189-198.
[39] KOU J, ZHANG W W. An approach to enhance the gener alization capability of nonlinear aerodynamic reduced-order models [J]. Aerospace Science and Technology, 2016, 49: 197-208.
[40] WANG X, KOU J Q, ZHANG W W, et al. Incorporat-ing Physical Models for Dynamic Stall Prediction Based on Machine Learning [J]. Aiaa Journal, 2022, 60(7): 4428-39.
[41] NGUYEN L T. Simulator study of stall/post-stall char-acteristics of a fighter airplane with relaxed longitudi-nal static stability [M]. National Aeronautics and Space Administration, 1979.
[42] KRIGE D G. A statistical approach to some basic mine valuation problems on the Witwatersrand [J]. Journal of the Southern African Institute of Mining and Metal-lurgy, 1951, 52(6): 119-39.
[43] EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[C]//MHS'95. Proceedings of the sixth international symposium on micro machine and human science. Ieee, 1995: 39-43.