大迎角机动飞行的气动力建模与飞行仿真

  • 李怀璐 ,
  • 王旭 ,
  • 王霄 ,
  • 赵彤 ,
  • 张伟伟
展开
  • 1. 西北工业大学
    2. 沈阳飞机设计研究所

收稿日期: 2022-12-19

  修回日期: 2023-04-09

  网络出版日期: 2023-04-11

基金资助

基于数据融合策略的翼型亚声速动态失速特性预测新方法

Aerodynamic modeling and flight simulation of maneuverable flight at high angle of attack

  • LI Huai-Lu ,
  • WANG Xu ,
  • WANG Xiao ,
  • ZHAO Tong ,
  • ZHANG Wei-Wei
Expand

Received date: 2022-12-19

  Revised date: 2023-04-09

  Online published: 2023-04-11

摘要

由于显著的非线性、非定常效应,现有的风洞实验和数值方法仍然很难精确复现飞行器大迎角机动飞行特性。为了提高大迎角机动飞行仿真的精度,通过发展嵌入物理模型的集成神经网络架构来准确模化飞行器大迎角非定常气动力,进一步在时域耦合飞行器运动方程,实现了大迎角机动飞行仿真。以典型战斗机作为研究对象,将大迎角纵向飞行的开环宽频激励、开环简谐激励与过失速机动飞行数据作为气动力建模的样本数据,构建并对比了传统动导数模型、黑箱神经网络模型、集成神经网络模型三种气动力模型,并进一步对比了耦合仿真的飞行特性,提出了利用飞行仿真方法来对气动力模型进行鲁棒性检验的思路。结果表明,嵌入物理模型的集成神经网络的气动力建模的升力系数误差较传统动导数模型降低了57%,并在耦合过程中具有更好的鲁棒性和稳定性,飞机响应的误差较黑箱神经网络模型降低了63%,验证了所提出的建模框架在小样本飞行数据辨识中的优势与工程潜力。

本文引用格式

李怀璐 , 王旭 , 王霄 , 赵彤 , 张伟伟 . 大迎角机动飞行的气动力建模与飞行仿真[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2023.28410

Abstract

Due to the significant nonlinear and unsteady effects, it is difficult to accurately simulate the high angle of attack maneu-vering characteristics of aircraft by existing wind tunnel experiments and numerical methods. In order to improve the ac-curacy of high angle of attack maneuver flight simulation, the physical-model-embedding ensemble neural network was developed to accurately model the unsteady aerodynamics of aircraft at high angles of attack, and the flight dynamics equations were further coupled in time domain to realize high angle of attack maneuver flight simulation. Taking the F-16 fighter as the research object, the open loop broadband excitation, open loop Due to the significant nonlinear and unsteady effects, it is difficult to accurately simulate the high angle of attack maneu-vering characteristics of aircraft by existing wind tunnel experiments and numerical methods. In order to improve the ac-curacy of high angle of attack maneuver flight simulation, the physical-model-embedding ensemble neural network was developed to accurately model the unsteady aerodynamics of aircraft at high angles of attack, and the flight dynamics equations were further coupled in time domain to realize high angle of attack maneuver flight simulation. Taking the typi-cal fighter as the research object, the open loop broadband excitation, open loop harmonic excitation and post stall ma-neuver flight data of high angle of attack longitudinal flight are taken as the data sample of aerodynamic modeling. Be-sides, the traditional dynamic derivative model, black box neural network model and ensemble neural network model are constructed and compared, and the flight characteristics of coupled simulation are further compared. Besides, the idea of using the flight simulation method to test the robustness of the aerodynamic model is proposed. The results show that the aerodynamic modeling error of the physical-model-embedding ensemble neural network is 57% lower than that of the traditional dynamic derivative model, and has better robustness and stability in the coupling process. The aircraft re-sponse error is 63% lower than that of the black box neural network model, which proves the advantages and engineering potential of the proposed modeling framework in small sample flight data identification.

参考文献

[1] 杨伟. 关于未来战斗机发展的若干讨论 [J]. 航空学报, 2020, 41(06): 8-19.
YANG W. Development of future fighters [J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(06): 8-19. (in Chinese)
[2] TIRPAK J A. Air force creates new PEO for NGAD, applying "Digital Century Series" idea [EB/OL]. (2019-10-14)[2022-10-20]. http://airforcemag.com/Features/ Pag-es/2019/October%202019/Air-Force-Creates-New-PEO-for-NGAD-Applying-Digital-Century-Series-Idea.aspx .
[3] 曲东才. 战斗机过失速机动与近距格斗空战 [J]. 航空兵器, 2000, (04): 12-4.
QU D C. Fighter overstall maneuvers and close-range combat air combat [J]. Aero Weaponry, 2000, (04): 12-4. (in Chinese)
[4] 史忠科. 高性能飞机发展对控制理论的挑战 [J]. 航空学报, 2015, 36(08): 2717-34.
SHI Z K. Challenge of control theory in the presence of high performance aircraft development [J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(08): 2717-34. (in Chinese)
[5] HERBST W B. Future fighter technologies [J]. Journal of Aircraft, 1980, 17(8): 561-6.
[6] 王海峰, 展京霞, 陈科, 等. 战斗机大迎角气动特性研究技术的发展与应用 [J]. 空气动力学学报, 2022, 40(01): 1-25.
WANG H F, ZHAN J X, CHEN K, et al. Development and application of aerodynamic research technologies for fighters at high angle of attack [J]. Acta Aerody-namica Sinca, 2022, 40(01): 1-25. (in Chinese)
[7] 张子军, 赵彤, 孙烨, 等. 飞机大迎角飞行问题研究综述 [J]. 航空工程进展, 2022, 13(03): 74-85.
ZHANG Z, ZHAO T, SUN Y, et al. Review of the Study on High-angle-of-attack Flight Problems of Air-craft [J]. Advances in Aeronautical Science and Engi-neering, 2022, 13(03): 74-85. (in Chinese)
[8] 肖志祥, 崔文瑶, 刘健, 等. 新一代战斗机非定常流动数值研究综述 [J]. 航空学报, 2020, 41(06): 71-86.
XIAO Z X, CUI W Y, LIU J, et al. Review of numeri-cal research on unsteady flows of the new generation fighters [J], Acta Aeronautica et Astronautica Sinica, 2020, 41(06): 71-86. (in Chinese)
[9] 汪清, 钱炜祺, 丁娣. 飞机大迎角非定常气动力建模研究进展 [J]. 航空学报, 2016, 37(08): 2331-47.
WANG Q, QIAN W Q, DING D, A review of unsteady aerodynamic modeling of aircrafts at high angles of attack [J], Acta Aeronautica et Astronautica Sinica, 2016, 37(08): 2331-47. (in Chinese)
[10] Kalviste J. Use of rotary balance and forced oscilla-tion test data in six degrees of freedom simula-tion[C]//9th Atmospheric Flight Mechanics Confer-ence. 1982: 1364.
[11] 饶秋磊, 韩意新. 大迎角气动力建模与失速/尾旋模态仿真 [J]. 应用力学学报, 2018, 35(03): 472-8+683.
RAO Q L, HAN Y X. High angle of attack aerody-namic modeling and simulation and analysis of stall/spin mode [J]. Chinese Journal of Applied Me-chanics, 2018, 35(03): 472-8+683. (in Chinese)
[12] 李林刚, 高浩. 飞机大迎角气动数据的组成与应用 [J]. 飞行力学, 1997, (01): 1-7.
LI L G, GAO H. Aero Datas Integration and Applica-tion of the Airplane at High Angle of Attack [J]. Fight Dynamics, 1997, (01): 1-7. (in Chinese)
[13] MURCH A, FOSTER J. Recent NASA research on aerodynamic modeling of post-stall and spin dynam-ics of large transport airplanes[C]//45th AIAA aero-space sciences meeting and exhibit. 2007: 463.
[14] BRYAN G H, WILLIAMS W E. "The longitudinal stability of aerial gliders." [J]. Proceedings of the Roy-al Society of London, 1904, 73(489): 100-16.
[15] LIN G F, LAN C, BRANDON J, et al. A general-ized dynamic aerodynamic coefficient model for flight dynamics applications[C]//22nd Atmospheric Flight Mechanics Conference. 1997: 3643.
[16] TOBAK M. On the use of the indicial-function con-cept in the analysis of unsteady motions of wings and wing-tail combinations [R], 1954.
[17] GOMAN M, KHRABROV A. State-space representa-tion of aerodynamic characteristics of an aircraft at high angles of attack [J]. Journal of Aircraft, 1994, 31(5): 1109-15.
[18] 汪清, 蔡金狮. 飞机大攻角非定常气动力建模与辨识 [J]. 航空学报, 1996, (04): 391-8.
WANG Q, CAI J S. Unsteady aerodynamic modeling and identification of airplane at high angles of attack [J]. Acta Aeronautica et Astronautica Sinica, 1996, (04): 391-8. (in Chinese)
[19] 沈霖, 黄达, 吴根兴, 等. 战斗机大迎角非定常气动力建模 [J]. 航空学报, 2020, 41(06): 193-210.
SHEN L, HUANG D, WU G X, et al. Unsteady aero-dynamic modeling for fighter configuration at high angles of attack [J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(06): 193-210. (in Chinese)
[20] SHEN L, HUANG D, WU G. Time delay compensa-tion in lateral-directional flight control systems at high angles of attack [J]. Chinese Journal of Aeronautics, 2021, 34(4): 1-18.
[21] 岑飞, 李清, 刘志涛, 等. 民机极限飞行状态的动态气动力试验与建模 [J]. 航空学报, 2020, 41(08): 226-37.
GEN F, LI Q, Liu Z T, et al. Unsteady aerodynamics test and modeling of civil aircraft under extreme flight conditions [J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(08): 226-37. (in Chinese)
[22] 岑飞, 刘志涛, 蒋永, 等. 民机极限飞行状态非定常气动力建模 [J]. 航空学报, 2022, 43(08): 382-93.
GEN F, LIU Z T, JIANG Yong, et al. Unsteady aero-dynamics modeling of civil transport configuration under extreme flight conditions [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(08): 382-93. (in Chi-nese)
[23] KOU J, ZHANG W. Data-driven modeling for un-steady aerodynamics and aeroelasticity [J]. Progress in Aerospace Sciences, 2021, 125.
[24] 史志伟, 王峥华, 李俊成. 径向基神经网络在非线性非定常气动力建模中的应用研究 [J]. 空气动力学学报, 2012, 30(01): 108-12+19.
SHI Z W, WANG Z H, LI J C. The research of RBFNN in modeling of nonlinear unsteady aerodynamics [J]. Acta Aeronautica et Astronautica Sinica, 2012, 30(01): 108-12+19. (in Chinese)
[25] ZHANG W W, WANG B, YE Z, et al. Efficient Meth-od for Limit Cycle Flutter Analysis Based on Nonline-ar Aerodynamic Reduced-Order Models [J]. AIAA Journal, 2012, 50(5): 1019-28.
[26] GHOREYSHI M, JIRáSEK A, CUMMINGS R M. Computational approximation of nonlinear unsteady aerodynamics using an aerodynamic model hierarchy [J]. Aerospace Science and Technology, 2013, 28(1): 133-44.
[27] LI W, LAIMA S, JIN X, et al. A novel long short-term memory neural-network-based self-excited force model of limit cycle oscillations of nonlinear flutter for various aerodynamic configurations [J]. Nonline-ar Dynamics, 2020, 100(3): 2071-87.
[28] LI K, KOU J, ZHANG W W. Deep neural network for unsteady aerodynamic and aeroelastic modeling across multiple Mach numbers [J]. Nonlinear Dynam-ics, 2019, 96(3): 2157-77.
[29] BAGHERZADEH S A. Nonlinear aircraft system iden-tification using artificial neural networks enhanced by empirical mode decomposition [J]. Aerospace Science and Technology, 2018, 75: 155-71.
[30] LYU Y, CAO Y, ZHANG W, et al. Dynamic surface control design of post-stall maneuver under unsteady aerodynamics [J]. Aerospace Science and Technology, 2018, 80: 269-80.
[31] GREENWELL D. A review of unsteady aerodynamic modelling for flight dynamics of manoeuvrable air-craft[C]//AIAA atmospheric flight mechanics confer-ence and exhibit. 2004: 5276.
[32] 李仑, 王刚, 索谦, 等. 飞行器阵风响应的CFD-6DOF仿真分析 [J]. 航空工程进展, 2015, 6(01): 26-31.
LI L, WANG G, SUO Q, et al. CFD-6DOF simulation analysis of aircraft gust response [J]. advances in aer-onautical science and engineering, 2015, 6(01): 26-31. (in Chinese)
[33] 王培涵, 吴志刚, 杨超, 等. 一种适用于弹性飞机飞行仿真的补丁方法 [J/OL]. 航空学报.
WANG P H, WU Z G, YANG C, et al. Flight simulation of flexible aircrafts with a method of patch module [J/OL]. Acta Aeronautica et Astronautica Sinica. (in Chinese)
[34] 王刚, 邢宇, 朱亚楠. 旋转弹气动力建模与飞行轨迹仿真 [J]. 航空学报, 2017, 38(01): 108-17.
WANG G, XING Y, ZHU Y N. Aerodynamic modeling and flight trajectory simulation of spinning projectile [J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(01): 108-17. (in Chinese)
[35] 师妍, 万志强, 吴志刚, 等. 基于气动力降阶的弹性飞机阵风响应仿真分析及验证 [J]. 航空学报, 2022, 43(01): 335-54.
SHI Y, WANG Z Q, WU Z G, et al. Gust response analysis and verification of elastic aircraft based on nonlinear aerodynamic reduced-order model [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(01): 335-54. (in Chinese)
[36] BRYAN G H, WILLIAMS W E. The longitudinal sta-bility of aerial gliders [J]. Proceedings of the Royal Society of London, 1904, 73(488): 100-16.
[37] WANG X, KOU J, ZHANG W W. Unsteady aerody-namic modeling based on fuzzy scalar radial basis function neural networks [J]. Proceedings of the Insti-tution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(14): 5107-21.
[38] ZHANG W, GUO X, WANG C, et al. A pod-based center selection for RBF neural network in time series prediction problems[C]//International Conference on Adaptive and Natural Computing Algorithms. Springer, Berlin, Heidelberg, 2007: 189-198.
[39] KOU J, ZHANG W W. An approach to enhance the gener alization capability of nonlinear aerodynamic reduced-order models [J]. Aerospace Science and Technology, 2016, 49: 197-208.
[40] WANG X, KOU J Q, ZHANG W W, et al. Incorporat-ing Physical Models for Dynamic Stall Prediction Based on Machine Learning [J]. Aiaa Journal, 2022, 60(7): 4428-39.
[41] NGUYEN L T. Simulator study of stall/post-stall char-acteristics of a fighter airplane with relaxed longitudi-nal static stability [M]. National Aeronautics and Space Administration, 1979.
[42] KRIGE D G. A statistical approach to some basic mine valuation problems on the Witwatersrand [J]. Journal of the Southern African Institute of Mining and Metal-lurgy, 1951, 52(6): 119-39.
[43] EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[C]//MHS'95. Proceedings of the sixth international symposium on micro machine and human science. Ieee, 1995: 39-43.
文章导航

/