航空发动机非定常流固热声耦合专栏

自适应湍流耦合建表燃烧模型的振荡燃烧数值模拟

  • 陈涛 ,
  • 徐兴平 ,
  • 张宏达 ,
  • 韩省思
展开
  • 1.南京航空航天大学 能源与动力学院,南京  210016
    2.中国航发沈阳发动机研究所,沈阳  110015
.E-mail: xshan@nuaa.edu.cn

收稿日期: 2022-11-01

  修回日期: 2022-11-22

  录用日期: 2022-12-28

  网络出版日期: 2023-04-11

基金资助

国家自然科学基金(92041001);江苏省自然科学基金(BK20200069);国家科技重大专项(J2019-III-0015-0059)

Numerical simulation of combustion instability by SATES coupling with FGM combustion model

  • Tao CHEN ,
  • Xingping XU ,
  • Hongda ZHANG ,
  • Xingsi HAN
Expand
  • 1.College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing  210016,China
    2.AECC Shenyang Engine Research Institute,Shenyang  110015,China
E-mail: xshan@nuaa.edu.cn

Received date: 2022-11-01

  Revised date: 2022-11-22

  Accepted date: 2022-12-28

  Online published: 2023-04-11

Supported by

National Natural Science Foundation of China(92041001);Jiangsu Provincial Natural Science Foundation(BK20200069);National Science and Technology Major Project(J2019-III-0015-0059)

摘要

航空发动机及燃气轮机等动力装备燃烧室广泛采用的贫燃燃烧方式经常遇到破坏性的非定常热声耦合振荡燃烧问题。非定常振荡燃烧数值预测是一个长期的研究热点和难题。发展了针对振荡燃烧的耦合直接求解数值模拟方法,包括优化的动态模型参数的高精度自适应湍流模型(SATES),耦合可压缩的详细化学反应建表FGM燃烧模型。选取的3种湍流燃烧模型包括有限速率模型(W1)及火焰面密度封闭方法中的Zimont(W2)和Fureby(W3)2种褶皱因子模型。针对经典的LIMOUSINE燃烧室多个部分预混振荡燃烧工况开展了数值研究,发现自适应湍流模拟框架下的3种燃烧模型均准确预测到了振荡燃烧的振荡频率,与试验相比,误差<6.4%;对于振荡燃烧压力脉动振幅的预测结果,有限速率模型(W1)和Zimont(W2)模型结果显著大于试验值,误差>380%;Fureby(W3)模型结果与试验值吻合较好,误差<17.9%。表明振荡燃烧的数值预测对不同的湍流及湍流燃烧模型具有较高的敏感性。不同的工况结果表明,振荡燃烧存在完全振荡模态和过渡模态,完全振荡模态中数值预测的特征主频在燃烧室上下游多个位置趋于一致;过渡振荡模态中上下游不同位置预测的特征主频存在双峰,即双频模式。本文发展的数值模拟方法对振荡燃烧的预测具有较高的计算精度和可靠性。

本文引用格式

陈涛 , 徐兴平 , 张宏达 , 韩省思 . 自适应湍流耦合建表燃烧模型的振荡燃烧数值模拟[J]. 航空学报, 2023 , 44(14) : 628207 -628207 . DOI: 10.7527/S1000-6893.2022.28207

Abstract

The lean-fuel combustion method is widely used in the combustion chamber of aircraft engines and gas turbines. However, this method often encounters destructive unsteady thermoacoustic combustion instability problems. Numerical prediction of unsteady combustion instability is a long-term research hotspot and challenging problem. In this study, a coupled direct numerical simulation method for combustion instability is developed, coupling a high-fidelity Self-Adaptive Turbulence Eddy Simulation (SATES) method with optimized dynamic model parameters and a compressible tabulated FGM combustion model with detailed chemical reaction. Three turbulent combustion models are selected including the finite rate model (W1) and two Flame Surface Density (FSD) models of Zimont (W2) and Fureby (W3). Numerical studies were carried out for the classical partially-premixed LIMOUSINE combustion chamber with combustion instability. It is found that the three combustion models under the SATES framework accurately predict the instability frequency of oscillating combustion, and the difference from the experimental data is small, which less than 6.4%. As to the prediction results of the instability amplitude of oscillating pressure, the finite rate model (W1) and Zimont (W2) model results are significantly larger than the experimental data, with the difference larger than 380%, and the Fureby (W3) model results are in good agreement with the experiments with the difference less than 17.9%. It is shown that the numerical prediction of combustion instability has high sensitivity to different turbulence and turbulent combustion models. The results from different test cases show that there are complete instability modes and transition modes in the combustion instability. The dominant frequency predicted by the numerical simulations in the complete instability mode tends to be consistent at multiple positions upstream and downstream of the combustion chamber. There are bimodal peaks in the predicted peak frequencies at different positions upstream and downstream in the transition instability mode, that is, dual-frequency mode. These results demonstrate that the numerical simulation method developed in the present study has high computational accuracy and reliability for the prediction of combustion instability.

参考文献

1 BAUER H J. New low emission strategies and combustor designs for civil aeroengine applications[J]. Progress in Computational Fluid Dynamics, an International Journal20044(3-5): 130-142.
2 POINSOT T. Prediction and control of combustion instabilities in real engines[J]. Proceedings of the Combustion Institute201736(1): 1-28.
3 程林.轴向旋流器振荡燃烧特性数值模拟研究[D]. 镇江:江苏科技大学, 2019.
  CHENG L. Numerical simulation study on oscillating combustion characteristics of axial cyclone[D]. Zhenjiang: Jiangsu University of Science and Technology, 2019 (in Chinese).
4 HAN X S, LI J X, MORGANS A S. Prediction of combustion instability limit cycle oscillations by combining flame describing function simulations with a thermoacoustic network model[J]. Combustion and Flame2015162(10): 3632-3647.
5 HAN X S, MORGANS A S. Simulation of the flame describing function of a turbulent premixed flame using an open-source LES solver[J]. Combustion and Flame2015162(5): 1778-1792.
6 LAERA D, CAMPA G, CAMPOREALE S M. A finite element method for a weakly nonlinear dynamic analysis and bifurcation tracking of thermo-acoustic instability in longitudinal and annular combustors[J]. Applied Energy2017187: 216-227.
7 SHAHI M, KOK J B W, ROMAN CASADO J C, et al. Assessment of thermoacoustic instabilities in a partially premixed model combustor using URANS approach[J]. Applied Thermal Engineering201471(1): 276-290.
8 SHAHI M, KOK J B W, ROMAN CASADO J C, et al. Transient heat transfer between a turbulent lean partially premixed flame in limit cycle oscillation and the walls of a can type combustor[J]. Applied Thermal Engineering201581:128-139.
9 CHEN Z X, SWAMINATHAN N, ST?HR M, et al. Interaction between self-excited oscillations and fuel-air mixing in a dual swirl combustor[J]. Proceedings of the Combustion Institute201937(2): 2325-2333.
10 FREDRICH D, JONES W P, MARQUIS A J. A combined oscillation cycle involving self-excited thermo-acoustic and hydrodynamic instability mechanisms[J]. Physics of Fluids202133(8): 085122.
11 PANT T, JAIN U, WANG H F. Transported PDF modeling of compressible turbulent reactive flows by using the Eulerian Monte Carlo fields method[J]. Journal of Computational Physics2021425: 109899.
12 XIA Y, SHARKEY P, VERMA I,et al.Prediction of thermoacoustic instability and fluid-structure interactions for gas turbine combustor[J]. Journal Engineering Gas Turbines Power2022144(9):091005.
13 GHANI A, POINSOT T, GICQUEL L, et al. LES of longitudinal and transverse self-excited combustion instabilities in a bluff-body stabilized turbulent premixed flame[J]. Combustion and Flame2015162(11): 4075-4083.
14 程豫洲. 燃烧不稳定机理及其影响因素的全可压缩数值模拟研究[D]. 杭州: 浙江大学, 2021.
  CHENG Y Z. Study on fully compressible numerical simulation of combustion instability mechanism and its influencing factors[D]. Hangzhou: Zhejiang University, 2021 (in Chinese).
15 YANG Y, WANG G F, FANG Y Q, et al. Experimental study of the effect of outlet boundary on combustion instabilities in premixed swirling flames[J]. Physics of Fluids202133(2): 027106.
16 ROMAN CASADO J C. Nonlinear behavior of the thermoacoustic instabilities in the limousine combustor[D]. Enschede: University of Twente,2013.
17 MA F H, PROSCIA W, IVANOV V, et al. Large eddy simulation of self-excited combustion dynamics in a bluff-body combustor[C]∥ 51st AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2015.
18 MICHAEL B.Evaluation of impedance boundary conditions in ANSYS Fluent[D].Munich: Technical University of Munich, 2017.
19 COKLJAT D, JEMCOV A, MARUSZEWSKI J P.An implicit algorithm for finite volume-Finite element coupling[C]∥Sixth International Conference on Computational Method. 2015.
20 HAN X S, KRAJNOVI? S. An efficient very large eddy simulation model for simulation of turbulent flow[J]. International Journal for Numerical Methods in Fluids201371(11): 1341-1360.
21 HAN X S, KRAJNOVI? S. Validation of a novel very large eddy simulation method for simulation of turbulent separated flow[J]. International Journal for Numerical Methods in Fluids201373(5): 436-461.
22 HAN X S, KRAJNOVI? S. Very-large-eddy simulation based on k-ω model[J]. AIAA Journal201553(4): 1103-1108.
23 POPE S B. Turbulent flows[M]. Cambridge: Cambridge University Press, 2000.
24 MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal199432(8): 1598-1605.
25 LECOCQ G, RICHARD S, COLIN O, et al. Hybrid presumed pdf and flame surface density approaches for Large-Eddy Simulation of premixed turbulent combustion. Part 1:Formalism and simulation of a quasi-steady burner[J]. Combustion and Flame2011158(6): 1201-1214.
26 LECOCQ G, RICHARD S, COLIN O, et al. Hybrid presumed pdf and flame surface density approaches for Large-Eddy Simulation of premixed turbulent combustion. Part 2:Early flame development after sparking[J]. Combustion and Flame2011158(6): 1215-1226.
27 BOGER M, VEYNANTE D, BOUGHANEM H, et al. Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion[J]. Symposium (International) on Combustion199827(1): 917-925.
28 FUREBY C. A fractal flame-wrinkling large eddy simulation model for premixed turbulent combustion[J]. Proceedings of the Combustion Institute200530(1): 593-601.
29 ZIMONT V L, LIPATNIKOV A N. A numerical model of premixed turbulent combustion of gases[J].Chemical Physics Reports199514(7):993-1025.
30 MA T, STEIN O T, CHAKRABORTY N, et al. A posteriori testing of algebraic flame surface density models for LES[J]. Combustion Theory and Modelling201317(3): 431-482.
31 ROCHETTE B, COLLIN-BASTIANI F, GICQUEL L, et al. Influence of chemical schemes, numerical method and dynamic turbulent combustion modeling on LES of premixed turbulent flames[J]. Combustion and Flame2018191: 417-430.
32 GARBY R, SELLE L, POINSOT T. Analysis of the impact of heat losses on an unstable model rocket-engine combustor using Large-Eddy Simulation[C]∥ 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2012.
33 HERNáNDEZ I, STAFFELBACH G, POINSOT T, et al. LES and acoustic analysis of thermo-acoustic instabilities in a partially premixed model combustor[J]. Comptes Rendus Mécanique2013341(1-2): 121-130.
文章导航

/