高频脉冲电流改性SiC/Al复合材料微裂纹愈合机制及组织性能
收稿日期: 2023-02-22
修回日期: 2023-03-20
录用日期: 2023-03-27
网络出版日期: 2023-04-07
基金资助
国家自然科学基金(52205405);山西省基础研究计划(20210302124653);太原理工大学校基金(2022QN151);山西省高等学校科技创新项目(2021L068)
Microcrack healing mechanism and microstructure properties of SiC/Al composites modified by high frequency pulse current
Received date: 2023-02-22
Revised date: 2023-03-20
Accepted date: 2023-03-27
Online published: 2023-04-07
Supported by
National Natural Science Foundation of China(52205405);Fundamental Research Program of Shanxi Province(20210302124653);Taiyuan University of Technology School Foundation(2022QN151);Science and Technology Innovation Program of Higher Education Institutions in Shanxi Province(2021L068)
采用高频脉冲电流技术改性处理轧制态SiC/Al复合材料。首先利用扫描电子显微镜(SEM)和电子背散射衍射仪(EBSD)对不同状态下复合材料的微观组织进行了观察分析,研究了高频脉冲电流作用下微裂纹的动态愈合机制。然后,对复合材料的微纳力学性能及拉伸性能进行了测试。结果表明,高频脉冲电流有效促进了轧制态复合材料发生静态再结晶,使基体晶粒由2.47 μm细化至2.02 μm,再结晶体积分数由7.43%提高至39.73%,择优取向明显减弱。钻孔-冷轧法预制的微裂纹尖端在高频脉冲电流作用下产生了局部高温,并在压应力的作用下实现了部分愈合。高频脉冲电流处理后,复合材料的拉伸强度和伸长率由347 MPa和12.23%优化至475 MPa和21.65%。研究为拓宽SiC/Al复合材料在航空领域的应用范围奠定了相关理论及实践基础。
关键词: SiC/Al复合材料; 高频脉冲电流; 晶粒细化; 微裂纹愈合; 再结晶
刘瑞峰 , 孙晓哲 , 李文辉 , 王显 , 闫杰 . 高频脉冲电流改性SiC/Al复合材料微裂纹愈合机制及组织性能[J]. 航空学报, 2023 , 44(22) : 428598 -428598 . DOI: 10.7527/S1000-6893.2023.28598
High-frequency pulsed current technique was employed to modify the microstructure and performance of as-rolled SiC/Al composites. The microstructure of the composites in different states was observed and analyzed by Scanning Elcetron Microscopy (SEM) and Electron Back-Scattered Diffraction (EBSD). The dynamic healing mechanism of microcrack under high frequency pulse current was investigated. Finally, the micro-nano mechanical properties and tensile properties of the composites were tested. Results show that the high frequency pulse current can effectively promote the static recrystallization of the as-rolled composite.Grain size was refined from 2.47 μm to 2.02 μm, and recrystallization ratio increased from 7.34% to 39.73%, which results in the weakening of the preference orientation. Micro-crack tips prefabricated by the drilling and cold rolling method were partially healed under the action of high temperature and pressure stress induced by high frequency pulse current. Tensile strength and elongation of the as-rolled composites were optimized from 347 MPa and 12.23% to 475 MPa and 21.65% after high frequency pulse current treatment. This research laid the theoretical and practical foundation for the expansion of SiC/Al composites in aviation field.
1 | 崔岩, 史文方. SiCp/Al复合材料界面控制与评价新方法[J]. 航空学报, 2000, 21(6): 571-574. |
CUI Y, SHI W F. New method to control and evaluate the interface of SiCp/Al composites[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(6): 571-574 (in Chinese). | |
2 | 詹美燕, 傅定发, 吴有伍, 等. SiC颗粒尺寸对喷射共沉积7075 Al/SiCp挤压及轧制的组织和性能的影响[J]. 精密成形工程, 2004, 22(1): 49-53. |
ZHAN M Y, FU D F, WU Y W, et al. The effects of particle sizes on microstructure and mechanical properties of Co-sprayed 7075Al/SiCp/15 mass% composite[J]. Metal Forming Technology, 2004, 22(1): 49-53 (in Chinese). | |
3 | 聂俊辉, 樊建中, 魏少华, 等. 航空用粉末冶金颗粒增强铝基复合材料研制及应用[J]. 航空制造技术, 2017, 60(16):26-36. |
NIE J H, FAN J Z, WEI S H, et al. Research and application of powder metallurgy particle reinforced aluminum matrix composite used in aviation[J]. Aeronautical Manufacturing Technology, 2017, 60(16): 26-36 (in Chinese). | |
4 | MHASKE M S, SHIRSAT U M. An investigation of mechanical properties of aluminium based silicon carbide (AlSiC) metal matrix composite by different manufacturing methods[J]. Materials Today: Proceedings, 2021, 44: 376-382. |
5 | REDDY B R, SRINIVAS C. Fabrication and characterization of silicon carbide and fly ash reinforced aluminium metal matrix hybrid composites[J]. Materials Today: Proceedings, 2018, 5(2): 8374-8381. |
6 | 周艳华. 碳化硅颗粒增强铝基复合材料主要制备技术[J]. 工具技术, 2017, 51(4):7-10. |
ZHOU Y H. Main preparation processes and research status of SiC particle reinforced aluminum matrix composites[J]. Tool Engineering, 2017, 51(4): 7-10 (in Chinese). | |
7 | 林师朋, 刘金炎, 纪艳丽. 铝基复合材料的增强体研究及发展现状[J]. 有色金属加工, 2016, 45(6): 6-11. |
LIN S P, LIU J Y, JI Y L. Study and development of reinforcement in aluminum matrix composites[J]. Nonferrous Metals Processing, 2016, 45(6): 6-11 (in Chinese). | |
8 | JIANG X D, XIAO D H, TENG X Y. Influence of vibration parameters on ultrasonic vibration cutting micro-particles reinforced SiC/Al metal matrix composites[J].The International Journal of Advanced Manufacturing Technology, 2022, 119(9-10): 6057-6071. |
9 | 胡代忠, 陈礼清, 赵明久, 等. SiC颗粒增强铝基复合材料薄板的力学性能[J]. 中国有色金属学报, 2000, 10(6):827-831. |
HU D Z, CHEN L Q, ZHAO M J, et al. Mechanical properties of SiC particle reinforced aluminum matrix composite sheet[J]. The Chinese Journal of Nonferrous Metals, 2000, 10(6): 827-831 (in Chinese). | |
10 | 毕敬, 肖伯律, 马宗义. SiCp/2024铝基复合材料的超塑性变形行为研究[J]. 金属学报, 2002, 38(6): 621-624. |
BI J, XIAO B L, MA Z Y. High strain rate superplastic deformation behavior of powder-metallurgy processed 17% SiCp/2024 Al composite[J]. Acta Metallurgica Sinica, 2002, 38(6): 621-624 (in Chinese). | |
11 | MAJI P, NATH R K, KARMAKAR R, et al. Effect of post processing heat treatment on friction stir welded/processed aluminum based alloys and composites[J]. CIRP Journal of Manufacturing Science and Technology, 2021, 35: 96-105. |
12 | MOHAMADIGANGARAJ J, NOUROUZI S, JAMSHIDI AVAL H. The effect of heat treatment and cooling conditions on friction stir processing of A390-10wt% SiC aluminium matrix composite[J]. Materials Chemistry and Physics, 2021, 263: 124423. |
13 | WANG B, HUANG L J, GENG L, et al. Effects of heat treatments on microstructure and tensile properties of as-extruded TiBw/near-α Ti composites[J]. Materials and Design, 2015, 85: 679-686. |
14 | ZHANG W, ZHAO W S, LI D X, et al. Novel combinatorial microstructures in Ti-6Al-4V alloy achieved byan electric-current-pulse treatment[J]. International Journal of Materials Research, 2006, 97(8): 1143-1151. |
15 | XIE L C, WU Y Y, YAO Y P, et al. Refinement of TiB reinforcements in TiB/Ti-2Al-6Sn titanium matrix composite via electroshock treatment[J]. Materials Characterization, 2021, 180: 111395. |
16 | XIE L C, LIU C, SONG Y L, et al. Evaluation of microstructure variation of TC11 alloy after electroshocking treatment[J]. Journal of Materials Research and Technology, 2020, 9(2): 2455-2466. |
17 | 刘斌, 高一迪, 谭志勇, 等. 二维叠层C/SiC复合材料低能量冲击损伤实验[J]. 航空学报, 2021, 42(2): 110-120. |
LIU B, GAO Y D, TAN Z Y, et al. Low energy level impact damage on 2D C/SiC composites: Experimental study[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 110-120 (in Chinese). | |
18 | WEI S P, WANG G, DENG D W, et al. Microstructure characterization and thermal behavior around crack tip under electropulsing[J].Applied Physics:A, 2015, 121(1): 69-76. |
19 | RUDOLF C, GOSWAMI R, KANG W, et al. Effects of electric current on the plastic deformation behavior of pure copper, iron, and titanium[J]. Acta Materialia, 2021, 209: 116776. |
20 | JEONG K, JIN S W, KANG S G, et al. Athermally enhanced recrystallization kinetics of ultra-low carbon steel via electric current treatment[J]. Acta Materialia, 2022, 232: 117925. |
21 | MILOSLAV K, MARTIN T, ALES R. Skin-effect in conductor of rectangular cross-section—Approximate solution[J]. Przeglad Elektrotechniczny, 2012, 88(7): 23-25. |
22 | LIU L P, ZHAO Z J, ZHANG J C, et al. Giant magneto-impedance and skin effect in CuBe/CoNiP composite wires[J]. Journal of Magnetism and Magnetic Materials, 2006, 305(1): 212-215. |
23 | WANG Z J, SONG H, CAI S P, DUAN J, REN X W. Research advancements on self-healing of cracks and evolution of microstructures of titanium alloy sheets induced by electropulsing[J]. Journal of Plasticity Engineering, 2019, 26(2): 1-14. |
24 | ZHOU Y Z, GUO J D, GAO M, et al. Crack healing in a steel by using electropulsing technique[J]. Materials Letters, 2004, 58(11): 1732-1736. |
25 | QIN R S, SU S X. Thermodynamics of crack healing under electropulsing[J].Journal of Materials Research, 2002, 17(8): 2048-2052. |
26 | SONG H, WANG Z J. Microcrack healing and local recrystallization in pre-deformed sheet by high density electropulsing[J]. Materials Science and Engineering: A, 2008, 490(1-2): 1-6. |
27 | 易卓勋, 赖小明, 王博, 等. 高密度脉冲电流对SiCp/Al板材裂纹的修复作用[J]. 航空学报, 2017, 38(11): 206-213. |
YI Z X, LAI X M, WANG B, et al. Effect of high density pulse current on healing of cracks of SiCp/Al composites[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11): 206-213 (in Chinese). | |
28 | 王博. 脉冲电流对铝基复合材料拉深变形与扩散连接的影响[D]. 哈尔滨: 哈尔滨工业大学, 2013: 68-70. |
WANG B. Effect of pulse current on drawing deformation and diffusion bonding of aluminum matrix composites[D]. Harbin: Harbin Institute of Technology, 2013: 68-70 (in Chinese). | |
29 | MECKLENBURG M, ZUTTER B T, LING X Y, et al. Visualizing the electron wind force in the elastic regime[J]. Nano Letters, 2021, 21(24): 10172-10177. |
30 | LI X, ZHU Q, HONG Y R, et al. Revealing the pulse-induced electroplasticity by decoupling electron wind force[J]. Nature Communications, 2022, 13(1): 1-9. |
31 | 邹磊, 武颖, 岑启宏. 电脉冲处理对W6Mo5Cr4V2高速钢的影响[J]. 材料工程, 2016, 44(2): 23-27. |
ZOU L, WU Y, CEN Q H. Influence of electric current pulse treatment on W6Mo5Cr4V2 high speed steel[J]. Journal of Materials Engineering, 2016, 44(2):23-27 (in Chinese). | |
32 | LIU R F, WANG W X, CHEN H S, et al. Comparative study of recrystallization behaviour and nanoindentation properties of micro-/ nano-bimodal size B4C particle-reinforced aluminium matrix composites under T6 and electropulsing treatment[J]. Journal of Alloys and Compounds, 2019, 788: 1056-1065. |
/
〈 |
|
〉 |