流体力学与飞行力学

一种基于面元梯度重建的格心型有限体积空间离散方法

  • 魏雁昕 ,
  • 刘君
展开
  • 大连理工大学 航空航天学院,大连 116024
.E-mail: liujun65@dlut.edu.cn

收稿日期: 2023-02-10

  修回日期: 2023-03-03

  录用日期: 2023-03-27

  网络出版日期: 2023-04-07

基金资助

国家自然科学基金(11872144)

Spatial discretization algorithm for cell-centered finite volume method based on face gradient reconstruction

  • Yanxin WEI ,
  • Jun LIU
Expand
  • School of Aeronautics and Astronautics,Dalian University of Technology,Dalian  116024,China

Received date: 2023-02-10

  Revised date: 2023-03-03

  Accepted date: 2023-03-27

  Online published: 2023-04-07

Supported by

National Natural Science Foundation of China(11872144)

摘要

梯度重构过程决定了有限体积法的空间离散精度和鲁棒性,针对二阶格心型有限体积法,研究并提出了一种新型梯度重构方法。该方法基于加权最小二乘原理,首先计算确定面元中心的变量值和变量梯度,然后针对不同网格类型分别使用中心差分、算术平均的方法求解单元格心变量梯度,在此基础上将边界条件与梯度重构过程相结合,发展了适配新方法的边界约束算法。利用精确测试函数进行网格收敛性研究,证明本文方法在光滑解条件下可以实现全场梯度的线性精确,一系列的无黏和黏性流动算例验证表明,相较于传统方法,本文方法可以有效降低近边界区域的数值耗散,提高计算精度,同时在大长宽比三角形网格条件下也具有良好的鲁棒性。

本文引用格式

魏雁昕 , 刘君 . 一种基于面元梯度重建的格心型有限体积空间离散方法[J]. 航空学报, 2024 , 45(1) : 128541 -128541 . DOI: 10.7527/S1000-6893.2023.28541

Abstract

The gradient reconstruction process determines the spatial discretization accuracy and robustness of the finite volume method. A novel gradient reconstruction method is proposed for the cell-centered finite volume method. Based on the weighted least squares principle, this method calculates the face-centered variables and the gradient of these variables and then solves the cell-centered gradient using either central difference or arithmetic averaging methods for different grid types. Finally, a new boundary constraint algorithm adapted to the new gradient reconstruction method is developed by combining boundary conditions with the gradient reconstruction process. A grid convergence study using an exact test function shows that the new method can achieve the linear reconstruction of the full-field gradient under smooth solution conditions. A series of inviscid and viscous flow cases show that, compared with the previous method, this method can effectively reduce the numerical dissipation in the near boundary region and improve the computational accuracy with better robustness under the large aspect ratio triangular grid.

参考文献

1 ABGRALL R. On essentially non-oscillatory schemes on unstructured meshes: Analysis and implementation[J]. Journal of Computational Physics1994114(1): 45-58.
2 HU C Q, SHU C W. Weighted essentially non-oscillatory schemes on triangular meshes[J]. Journal of Computational Physics1999150(1): 97-127.
3 DUMBSER M, K?SER M. Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems[J]. Journal of Computational Physics2007221(2): 693-723.
4 BARTH T, FREDERICKSON P. Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction∥Proceedings of the 28th Aerospace Science Meeting. Reston: AIAA, 1990.
5 BARTH T. Recent developments in high order K-exact reconstruction on unstructured meshes[C]∥ Proceedings of the 31st Aerospace Sciences Meeting. Reston: AIAA, 1993.
6 WANG Q A, REN Y X, PAN J H, et al. Compact high order finite volume method on unstructured grids III: Variational reconstruction[J]. Journal of Computational Physics2017337: 1-26.
7 任玉新, 王乾, 潘建华, 等. 构建非结构网格高精度有限体积方法的新途径[J]. 航空学报202142(9): 625783.
  REN Y X, WANG Q, PAN J H, et al. Novel approaches to design of high order finite volume schemes on unstructured grids[J]. Acta Aeronautica et Astronautica Sinica202142(9): 625783 (in Chinese).
8 EKATERINARIS J A. High-order accurate, low numerical diffusion methods for aerodynamics[J]. Progress in Aerospace Sciences200541(3-4): 192-300.
9 WANG Z J. High-order methods for the Euler and Navier–stokes equations on unstructured grids[J]. Progress in Aerospace Sciences200743(1-3): 1-41.
10 ANTONIADIS A F, TSOUTSANIS P, DRIKAKIS D. Assessment of high-order finite volume methods on unstructured meshes for RANS solutions of aeronautical configurations[J]. Computers & Fluids2017146: 86-104.
11 陈泽栋. 针对格心型有限体积法的基于格点的变量/梯度重构算法[D]. 大连: 大连理工大学, 2022.
  CHEN Z D. Variable/gradient reconstruction algorithm based on lattice points for lattice-centered finite volume method[D].Dalian: Dalian University of Technology, 2022 (in Chinese).
12 BARTH T. A 3-D upwind Euler solver for unstructured meshes[C]∥Proceedings of the 10th Computational Fluid Dynamics Conference. Reston: AIAA, 1991.
13 WEI Y X, ZHANG F, LIU J, et al. A constrained boundary gradient reconstruction method for unstructured finite volume discretization of the Euler equations[J]. Computers & Fluids2023252: 105774.
14 THOMAS J L. Accuracy of gradient reconstruction on grids with high aspect ratio: 2008-12[R]. Hampton: National Institute of Aerospace, 2013.
15 DISKIN B, THOMAS J L. Comparison of node-centered and cell-centered unstructured finite-volume discretizations: Inviscid fluxes[J]. AIAA Journal201149(4): 836-854.
16 DISKIN B, THOMAS J L, NIELSEN E J, et al. Comparison of node-centered and cell-centered unstructured finite-volume discretizations: Viscous fluxes[J]. AIAA Journal201048(7): 1326-1338.
17 CHEN Z D, ZHANG F, LIU J, et al. A vertex-based reconstruction for cell-centered finite-volume discretization on unstructured grids[J]. Journal of Computational Physics2022451: 110827.
18 蒋跃文, 叶正寅. 适用于任意网格拓扑和质量的格心有限体积法[J]. 力学学报201042(5): 830-837.
  JIANG Y W, YE Z Y. A cell-centered finite volume method for arbitrary grid type[J]. Chinese Journal of Theoretical and Applied Mechanics201042(5): 830-837 (in Chinese).
19 JAMESON A, SCHMIDT W, TURKEL E. Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes[C]∥14th Fluid and Plasma Dynamics Conference. Reston: AIAA, 1981.
20 CHEN Z D, ZHANG F, LIU J, et al. An iterative near-boundary reconstruction strategy for unstructured finite volume method[J]. Journal of Computational Physics2020418: 109621.
21 WANG N H, LI M, MA R, et al. Accuracy analysis of gradient reconstruction on isotropic unstructured meshes and its effects on inviscid flow simulation[J]. Advances in Aerodynamics20191(1): 1-31.
22 BLAZEK J. Introduction[M]∥Computational Fluid Dynamics: Principles and Applications. Amsterdam: Elsevier, 2005: 1-4.
23 RAUWOENS P, VIERENDEELS J, MERCI B. A solution for the odd–even decoupling problem in pressure-correction algorithms for variable density flows[J]. Journal of Computational Physics2007227(1): 79-99.
24 JALALI A, SHARBATDAR M, OLLIVIER-GOOCH C. Accuracy analysis of unstructured finite volume discretization schemes for diffusive fluxes[J]. Computers and Fluids2014101: 220-232.
25 王年华, 李明, 张来平. 非结构网格二阶有限体积法中黏性通量离散格式精度分析与改进[J]. 力学学报201850(3): 527-537.
  WANG N H, LI M, ZHANG L P. Accuracy analysis and improvement of viscous flux schemes in unstructured second-order finite-volume discretization[J]. Chinese Journal of Theoretical and Applied Mechanics201850(3): 527-537 (in Chinese).
26 肖艺, 明平剑. 改进最小二乘法的非结构网格梯度重构算法[J]. 哈尔滨工程大学学报202041(12): 1819-1826.
  XIAO Y, MING P J. Gradient reconstruction of unstructured meshes based on improved least-squares method[J]. Journal of Harbin Engineering University202041(12): 1819-1826 (in Chinese).
27 HASELBACHER A. On constrained reconstruction operators[C]∥44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006.
28 康忠良, 闫超. 适用于混合网格的约束最小二乘重构方法[J]. 航空学报201233(9): 1598-1605.
  KANG Z L, YAN C. Constrained least-squares reconstruction method for mixed grids[J]. Acta Aeronautica et Astronautica Sinica201233(9): 1598-1605 (in Chinese).
29 陈浩, 华如豪, 袁先旭, 等. 基于自适应笛卡尔网格的飞翼布局流动模拟[J]. 航空学报202243(8): 125674.
  CHEN H, HUA R H, YUAN X X, et al. Simulation of flow around fly-wing configuration based on adaptive Cartesian grid[J]. Acta Aeronautica et Astronautica Sinica202243(8): 125674 (in Chinese).
30 DADONEL A, GROSSMAN B. Surface boundary conditions for the numerical solution of the Euler equations in three dimensions[J]. AIAA Journal199332(2): 285-293.
31 MENGALDO G, DE GRAZIA D, WITHERDEN F, et al. A guide to the implementation of boundary conditions in compact high-order methods for compressible aerodynamics[C]∥ Proceedings of the 7th AIAA Theoretical Fluid Mechanics Conference. Reston: AIAA, 2014.
32 VISBAL M. Evaluation of an implicit Navier-Stokes solver for some unsteady separated flows[C]∥ Proceedings of the 4th Joint Fluid Mechanics, Plasma Dynamics and Lasers Conference. Reston: AIAA, 1986.
33 COLLIS S S. Discontinuous Galerkin methods for turbulence simulation[C]∥Center for Turbulence Research Proceedings of the Summer Program,2002.
文章导航

/