流体力学与飞行力学

基于表面压力信息的空间流向涡识别方法

  • 郭江龙 ,
  • 顾蕴松 ,
  • 罗帅 ,
  • 李琳恺
展开
  • 南京航空航天大学 航空宇航学院,南京 210016
.E-mail:yunsonggu@nuaa.edu.cn

收稿日期: 2022-04-01

  修回日期: 2022-04-20

  录用日期: 2022-06-21

  网络出版日期: 2022-07-12

基金资助

国家数值风洞工程;国家自然科学基金面上项目(11972017);江苏高校优势学科建设工程资助项目;沈阳所扬州院创新工作站项目

Spatial streamwise vortex signature identification based on surface pressure information

  • Jianglong GUO ,
  • Yunsong GU ,
  • Shuai LUO ,
  • Linkai LI
Expand
  • College of Aerospace Engineering,Nanjing University of Aeronautics & Astronautics,Nanjing 210016,China

Received date: 2022-04-01

  Revised date: 2022-04-20

  Accepted date: 2022-06-21

  Online published: 2022-07-12

Supported by

National Numerical Windtunnel Project;National Natural Science Foundation of China(11972017);The Priority Academic Program Development of Jiangsu Education Institutions;Innovation Workstation Project of Yangzhou Institute of Shenyang Institute

摘要

旋涡与表面的相互作用广泛存在于各类飞行器的绕流中,旋涡影响飞行器表面的压力分布,引起其气动特性的改变。而表面压力分布同样反映飞行器绕流中复杂涡系的空间流动特征,结合迎角、侧滑角等来流参数,可以判断飞行器受力状态和运动趋势。以平面点涡和“镜像涡”理论为基础,建立基于表面展向压力分布曲线的空间涡识别方法。根据截面展向压力分布曲线是否存在因主涡诱导下洗气流产生的正压区,定义流向旋涡的近物面流动和远物面流动;根据二次涡相对于主涡的位置,定义压力分布曲线的“近二次涡侧”和“远二次涡侧”。利用展向压力分布曲线“远二次涡侧”的1/4峰值、峰值及其展向位置,识别流向旋涡空间位置特征和强度特征。搭建涡-面相互作用试验平台,比较空间流场测量结果和表面压力信息识别结果,验证该方法有效性。研究结果表明:通过表面压力分布曲线可以辨识流向旋涡的空间位置和强度特征,空间流场测量与基于表面压力信息的旋涡识别结果的关联性分析验证了该方法的有效性。为重构飞行器周围旋涡流动结构,以及实现飞行器气动力的预测奠定了重要的技术基础。

本文引用格式

郭江龙 , 顾蕴松 , 罗帅 , 李琳恺 . 基于表面压力信息的空间流向涡识别方法[J]. 航空学报, 2023 , 44(6) : 127228 -127228 . DOI: 10.7527/S1000-6893.2023.27228

Abstract

The interaction between vortices and the object surface exists in various situations of aircraft. The vortices affect the pressure distribution on the surface and aerodynamic performance of the aircraft. The pressure distribution on the surface can reflect the spatial flow characteristics of the vortices around the aircraft. Combined with the angle of attack, sideslip angle and other flow parameters, the surface pressure distribution can predict the force state and motion trend of the aircraft. This study establishes a vortex signature identification method based on surface pressure distribution according to the theories of point vortex and “mirror vortex”. The experimental results demonstrate that the surface pressure distribution curve can characterize the spatial position (projection position and height of the vortex core distance surface) and intensity of the vortex. The correlation analysis between the spatial flow field measurement and the vortex identification result based on surface pressure distribution verifies the effectiveness of the proposed method. It has laid an important technical foundation for reconstructing the vortex flow structure around the aircraft and realizing the prediction of the aerodynamic forces of the aircraft.

参考文献

1 高浩. 飞机大迎角飞行品质研究的进展[J]. 飞行力学199917(1): 1-7.
  GAO H. The advance of aircraft flying qualities researching at high angle of attack[J]. Flight Dynamics199917(1): 1-7 (in Chinese).
2 HERBST W B. Dynamics of air combat[J]. Journal of Aircraft198320(7): 594-598.
3 Francis M S, Keesee J E. Airfoil dynamic stall performance with large-amplitude motions[J]. AIAA Journal198523(11):1653-1659.
4 BRENTNER K S, FARASSAT F. Helicopter noise prediction: the current status and future direction[J]. Journal of Sound and Vibration1994170(1): 79-96.
5 LOWSON M V. Progress towards quieter civil helicopters[J]. The Aeronautical Journal199296(956): 209-223.
6 YU Y H. Rotor blade-vortex interaction noise[J]. Progress in Aerospace Sciences200036(2): 97-115.
7 任丁丁, 王俊琦, 杨柳, 等. 侧风条件下短舱进气道地面涡数值模拟[J]. 航空科学技术202132(2): 50-55.
  REN D D, WANG J Q, YANG L, et al. Numerical simulation of ground vortex of nacelle inlet under crosswind conditions[J]. Aeronautical Science & Technology202132(2): 50-55 (in Chinese).
8 LEE B H K. Vertical tail buffeting of fighter aircraft[J]. Progress in Aerospace Sciences200036(3-4): 193-279.
9 赵子杰, 高超, 张正科. 涡破裂诱导的垂尾抖振气动弹性分析[J]. 航空学报201637(2): 491-503.
  ZHAO Z J, GAO C, ZHANG Z K. Aeroelastic analysis of vertical tail buffeting induced by vortex breakdown[J]. Acta Aeronautica et Astronautica Sinica201637(2): 491-503 (in Chinese).
10 AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS, HEMSCH M J. Tactical missile aerodynamics: general topics[M]. Washington D. C.: American Institute of Aeronautics and Astronautics, 1992.
11 MCKENNA C, BROSS M, ROCKWELL D. Structure of a streamwise-oriented vortex incident upon a wing[J]. Journal of Fluid Mechanics2017816: 306-330.
12 MARKS C R, SONDERGAARD R. Vortex signature identification in surface pressure distributions using crease detection techniques[J]. AIAA Journal201755(6): 1783-1791.
13 李岸一, 王旭, 刘文法, 等. 鸭翼涡与边条涡对前掠翼布局的增升研究[J]. 空军工程大学学报(自然科学版)201011(1): 19-22, 58.
  LI A Y, WANG X, LIU W F, et al. Study on lift-enhancement of canard vortex and strake vortex to configuration with forward-swept wing[J]. Journal of Air Force Engineering University (Natural Science Edition)201011(1): 19-22, 58 (in Chinese).
14 WANG Q T, CHENG K M, GU Y S, et al. Continuous control of asymmetric forebody vortices in a bi-stable state[J]. Physics of Fluids201830(2): 024102.
15 顾蕴松. 大攻角前体非对称流动的控制技术[D]. 南京: 南京航空航天大学, 2005.
  GU Y S. Control of forebody flow asymmetry in high-angle flows[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2005 (in Chinese).
16 陈尹, 顾蕴松, 孙之骏, 等. 基于翼面压力的飞行器气动力感知技术与自由飞验证[J]. 航空学报202142(3): 124138.
  CHEN Y, GU Y S, SUN Z J, et al. Aerodynamic perception from distributed pressure and free flight test[J]. Acta Aeronautica et Astronautica Sinica202142(3): 124138 (in Chinese).
17 顾蕴松, 史楠星, 孙之骏, 等. 一种基于飞行状态感知的智能飞行器及飞行方法: CN202010073060.1[P]. 2020-05-15.
  GU Y S, SHI N X, SUN Z J, et al. An intelligent aircraft and flight method based on flight state perception: CN202010073060.1[P]. 2020-05-15.
18 WITTMER K S, DEVENPORT W J. Effects of perpendicular blade-vortex interaction, part 1: Turbulence structure and development[J]. AIAA Journal199937(7): 805-812.
19 WITTMER K S, DEVENPORT W J, GLEGG S A L. Effects of perpendicular blade-vortex interaction, part 2: parameter study[J]. AIAA Journal199937(7): 813-817.
20 BOOTH E R Jr. Surface pressure measurement during low speed two-dimensional blade-vortex interaction[C]∥10th Aeroacoustics Conference. Reston: AIAA, 1986: 1856.
21 SCHRECK S, HELIN H. Unsteady vortex dynamics and surface pressure topologies on a pitching wing[C]∥31st Aerospace Sciences Meeting. Reston: AIAA, 1993: 435.
22 GREENWELL D I, WOOD N J. Determination of vortex burst location on delta wings from surface pressure measurements[J]. AIAA Journal199230(11): 2736-2739.
23 刘超群. Liutex-涡定义和第三代涡识别方法[J]. 空气动力学学报202038(3): 413-431, 478.
  LIU C Q. Liutex-third generation of vortex definition and identification methods[J]. Acta Aerodynamica Sinica202038(3): 413-431, 478 (in Chinese).
24 孙之骏, 顾蕴松, 赵航. 流向涡-面干扰流动特征[J]. 空气动力学学报202038(3): 470-478.
  SUN Z J, GU Y S, ZHAO H. Experimental investigation of streamwise vortex-surface interaction[J]. Acta Aerodynamica Sinica202038(3): 470-478 (in Chinese).
25 章旷, 代钦. 地面效应作用下翼尖涡特性的PIV实验研究[J]. 空气动力学学报201533(3): 367-374, 405.
  ZHANG K, DAI Q. Experimental study on the tip vortices of a wing close to a flat and a wavy surface using PIV[J]. Acta Aerodynamica Sinica201533(3): 367-374, 405 (in Chinese).
26 BODSTEIN G, GEORGE A, HUI C. Vortex/surface interaction[C]∥ 31st Aerospace Sciences Meeting. Reston: AIAA, 1993.
文章导航

/