循环老化锂离子电池热失控气体原位爆炸极限实验分析
收稿日期: 2023-02-06
修回日期: 2023-03-03
录用日期: 2023-03-28
网络出版日期: 2023-03-31
基金资助
国家自然科学基金民航联合基金重点支持项目(U2033204);天津市城市空中交通系统技术与装备重点实验室开放基金(TJKL-UAM-202302);中央高校基本科研业务费(3122022PY11)
In⁃situ explosion limit of thermal runaway gas explosion in cyclic aging lithium⁃ion batteries: Experimental analysis
Received date: 2023-02-06
Revised date: 2023-03-03
Accepted date: 2023-03-28
Online published: 2023-03-31
Supported by
Key Support Project of Civil Aviation Joint Fund of National Natural Science Foundation of China(U2033204);Open Fund of Key Laboratory of Technology and Equipment of Tianjin Urban Air Transportation System(TJKL-UAM-202302);Fundamental Research Funds for the Central Universities(3122022PY11)
为确保全寿命周期内锂离子电池的安全状态处于可控范围,掌握老化锂电池的热危险性变得尤为重要。开发了一种基于计算机断层扫描(CT)的无损检测与原位检测热失控气体爆炸危险性相结合的方法,对不同循环老化程度的锂离子电池热失控气体爆炸极限及爆炸危险性进行实验分析。实验结果表明,与未经老化的锂电池相比,老化电池在热滥用条件下达到热失控所需热量减少;内部层状结构形变随着循环老化程度的加深而加剧,爆炸范围呈现收敛的趋势,并在锂电池经历120圈循环老化时达到最值。未老化锂电池的热失控气体的最高燃爆温度为203.4 ℃、最高燃爆压力为0.458 5 MPa,老化电池的热失控气体的燃爆危险性显著降低,随着老化程度的提高,虽然热失控气体的爆炸危险性有轻微回升,但仍远低于未老化电池。研究结果证明了CT无损检测与原位检测热失控气体爆炸危险性相结合的可行性,为进一步构建锂电池危险程度演化机制数据库及探测预警提供理论依据。
杨娟 , 牛江昊 , 张青松 . 循环老化锂离子电池热失控气体原位爆炸极限实验分析[J]. 航空学报, 2023 , 44(23) : 428529 -428529 . DOI: 10.7527/S1000-6893.2023.28529
To ensure the safety status of aging batteries under control, it is important to understand the thermal hazard of aging batteries. In this work, a non-destructive method based on Computed Tomography (CT) combined with in-situ detection of thermal runaway gas hazard was developed to analyze the thermal runaway gas explosion limit and explosion hazard of 18650 Li-ion batteries with different aging levels. The experimental results show that, compared with the unaged battery, the amount of heat required for aging batteries to achieve thermal runaway under thermal abuse is reduced. As the aging level increases, the internal laminar deformation of the aged battery increases and the explosion range tends to converge, reaching a maximum value when the battery undergoes 120 cycles of aging. The thermal runaway gas of the unaged battery exhibited the highest detonation temperature of 203.4 °C and the highest detonation pressure of 0.458 5 MPa, while the detonation risk of the thermal runaway gas of the aged battery was significantly lower. Although the detonation risk of the thermal runaway gas rebounded slightly with increasing ageing, it was still much lower than that of the unaged battery. The results demonstrate the feasibility of combining CT non-destructive testing with in-situ detection of thermal runaway gas hazard, and provide a theoretical basis for the database construction of the evolution mechanism of the lithium battery hazard level, as well as its detection and early warning.
1 | CAO W P, MECROW B C, ATKINSON G J, et al. Overview of electric motor technologies used for more electric aircraft (MEA)[J]. IEEE Transactions on Industrial Electronics, 2012, 59(9): 3523-3531. |
2 | 林卫斌, 吴嘉仪. 碳中和愿景下中国能源转型的三大趋势[J]. 价格理论与实践, 2021(7): 21-23, 114. |
LIN W B, WU J Y. Three trends for China’s energy transition under the carbon neutrality vision[J]. Price (Theory & Practice), 2021(7): 21-23, 114 (in Chinese). | |
3 | YANG J A, BAO X W, YANG Z G. Load identification for the more electric aircraft distribution system based on intelligent algorithm[J]. Aerospace, 2022, 9(7): 350. |
4 | ROBOAM X, SARENI B, DE ANDRADE A. More electricity in the air: toward optimized electrical networks embedded in more-electrical aircraft[J]. IEEE Industrial Electronics Magazine, 2012, 6(4): 6-17. |
5 | 黄俊, 杨凤田. 新能源电动飞机发展与挑战[J]. 航空学报, 2016, 37(1): 57-68. |
HUANG J, YANG F T. Development and challenges of electric aircraft with new energies[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 57-68 (in Chinese). | |
6 | SAEVARSDOTTIR G, TAO P C, STEFANSSON H, et al. Potential use of geothermal energy sources for the production of lithium-ion batteries[J]. Renewable Energy, 2014, 61: 17-22. |
7 | CARDONE M, GARGIULO B, FORNARO E. Modelling and experimental validation of a hybrid electric propulsion system for light aircraft and unmanned aerial vehicles[J]. Energies, 2021, 14(13): 3969. |
8 | JOHNSON W, SILVA C. NASA concept vehicles and the engineering of advanced air mobility aircraft[J]. The Aeronautical Journal, 2022, 126(1295): 59-91. |
9 | 韩玉琪, 朱大明, 付玉, 等. 2022电动垂直起降飞行器主要进展[J]. 航空动力, 2023(1): 19-22. |
HAN Y Q, ZHU D M, FU Y, et al. Main progress of electric vertical takeoff and landing vehicle in 2022[J]. Aerospace Power, 2023(1): 19-22 (in Chinese). | |
10 | 杨凤田, 范振伟, 项松, 等. 中国电动飞机技术创新与实践[J]. 航空学报, 2021, 42(3): 624619. |
YANG F T, FAN Z W, XIANG S, et al. Technical innovation and practice of electric aircraft in China[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 624619 (in Chinese). | |
11 | 纪宇晗, 孙侠生, 俞笑, 等. 双碳战略下的新能源航空发展展望[J]. 航空科学技术, 2022, 33(12): 1-11. |
JI Y H, SUN X S, YU X, et al. Development prospect of new energy aviation under the double carbon strategy[J]. Aeronautical Science & Technology, 2022, 33(12): 1-11 (in Chinese). | |
12 | ALEXANDER R, MEYER D, WANG J K. A comparison of electric vehicle power systems to predict architectures, voltage levels, power requirements, and load characteristics of the future all-electric aircraft[C]∥2018 IEEE Transportation Electrification Conference and Expo (ITEC). Piscataway: IEEE Press, 2018: 194-200. |
13 | LV F, WANG Z Y, SHI L Y, et al. Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries[J]. Journal of Power Sources, 2019, 441: 227175. |
14 | TARIQ M, MASWOOD A I, GAJANAYAKE C J, et al. Aircraft batteries: current trend towards more electric aircraft[J]. IET Electrical Systems in Transportation, 2017, 7(2): 93-103. |
15 | GANDOMAN F H, JAGUEMONT J, GOUTAM S, et al. Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges[J]. Applied Energy, 2019, 251: 113343. |
16 | CHOMBO P V, LAOONUAL Y. A review of safety strategies of a Li-ion battery[J]. Journal of Power Sources, 2020, 478: 228649. |
17 | SC-225 RTCA Inc. Minimum operational performance standards for rechargeable lithium batteries and battery systems: RTCA DO-311A [S]. Washinton, D. C.: Radio Technical Commission for Aeronautics, 2017. |
18 | ANON. Aircraft incident report: Auxiliary power unit battery fire, Japan airlines Boeing 787-8, JA829J, Boston, Massachusetts, January 7, 2013[R]. Washington, D. C.: National Transportation Safety Board, 2014. |
19 | WILLIARD N, HE W, HENDRICKS C, et al. Lessons learned from the 787 dreamliner issue on lithium-ion battery reliability[J]. Energies, 2013, 6(9): 4682-4695. |
20 | Eviation电动飞机测试中起火. 电动航空报道[EB/OL]. (2020-01-22) [2020-01-30]. . |
Fire in Eviation electric aircraft test. E-Flight-Expo [EB/OL]. (2020-01-22)[2020-01-30]. (in Chinese). | |
21 | FAA. Lithium batteries & lithium battery-powered devices[R]. Washington, D. C.: Federal Aviation Administration, 2019. |
22 | FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. |
23 | ZHANG L W, ZHAO P, XU M, et al. Computational identification of the safety regime of Li-ion battery thermal runaway[J]. Applied Energy, 2020, 261: 114440. |
24 | XU B, LEE J, KWON D, et al. Mitigation strategies for Li-ion battery thermal runaway: A review[J]. Renewable and Sustainable Energy Reviews, 2021, 150: 111437. |
25 | WERFELMAN L. Testing the limits: The NTSB calls for new tests to prove lithium-ion battery installations in aircraft can mitigate hazards tied to thermal runaway[J]. Aerosafety World, 2014, 9: 41-43. |
26 | LIU L, LIN C J, FAN B, et al. A new method to determine the heating power of ternary cylindrical lithium ion batteries with highly repeatable thermal runaway test characteristics[J]. Journal of Power Sources, 2020, 472: 228503. |
27 | 张青松, 曲奕润, 郝朝龙, 等. 三元锂离子电池热失控气体原位分析[J]. 高电压技术, 2022, 48(7): 2817-2825. |
ZHANG Q S, QU Y R, HAO C L, et al. In?situ analysis of thermal runaway gas in ternary lithium-ion battery[J]. High Voltage Engineering, 2022, 48(7): 2817-2825 (in Chinese). | |
28 | WANG J G, MEI W X, CUI Z X, et al. Experimental and numerical study on penetration-induced internal short-circuit of lithium-ion cell[J]. Applied Thermal Engineering, 2020, 171: 115082. |
29 | SHAN T X, WANG Z P, ZHU X Q, et al. Explosion behavior investigation and safety assessment of large-format lithium-ion pouch cells[J]. Journal of Energy Chemistry, 2022, 72: 241-257. |
30 | JIANG F W, LIU K, WANG Z R, et al. Theoretical analysis of lithium-ion battery failure characteristics under different states of charge[J]. Fire and Materials, 2018, 42(6): 680-686. |
31 | FENG X N, ZHENG S Q, REN D S, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64. |
32 | CHEN M Y, OUYANG D X, LIU J H, et al. Investigation on thermal and fire propagation behaviors of multiple lithium-ion batteries within the package[J]. Applied Thermal Engineering, 2019, 157: 113750. |
33 | ZHANG Q S, NIU J H, ZHAO Z H, et al. Research on the effect of thermal runaway gas components and explosion limits of lithium-ion batteries under different charge states[J]. Journal of Energy Storage, 2022, 45: 103759. |
34 | CHEN S C, WANG Z R, WANG J H, et al. Lower explosion limit of the vented gases from Li-ion batteries thermal runaway in high temperature condition[J]. Journal of Loss Prevention in the Process Industries, 2020, 63: 103992. |
35 | LI W F, WANG H W, ZHANG Y J, et al. Flammability characteristics of the battery vent gas: A case of NCA and LFP lithium-ion batteries during external heating abuse[J]. Journal of Energy Storage, 2019, 24: 100775. |
36 | 张青松, 赵启臣. 过充循环对锂离子电池老化及安全性影响[J]. 高电压技术, 2020, 46(10): 3390-3397. |
ZHANG Q S, ZHAO Q C. Effects of overcharge cycling on the aging and safety of lithium ion batteries[J]. High Voltage Engineering, 2020, 46(10): 3390-3397 (in Chinese). | |
37 | LIU J L, DUAN Q L, PENG W, et al. Slight overcharging cycling failure of commercial lithium-ion battery induced by the jelly roll destruction[J]. Process Safety and Environmental Protection, 2022, 160: 695-703. |
38 | WU Y, SAXENA S, XING Y J, et al. Analysis of manufacturing-induced defects and structural deformations in lithium-ion batteries using computed tomography[J]. Energies, 2018, 11(4): 925. |
39 | WALDMANN T, GORSE S, SAMTLEBEN T, et al. A mechanical aging mechanism in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2014, 161(10): A1742-A1747. |
40 | REN D S, HSU H, LI R H, et al. A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries[J]. eTransportation, 2019, 2: 100034. |
/
〈 |
|
〉 |