高超声速变外形飞行器事件触发有限时间控制
收稿日期: 2023-01-10
修回日期: 2023-02-16
录用日期: 2023-03-13
网络出版日期: 2023-03-31
Event-triggered fast finite time control for hypersonic morphing vehicles
Received date: 2023-01-10
Revised date: 2023-02-16
Accepted date: 2023-03-13
Online published: 2023-03-31
针对高超声速变形飞行器处于变形飞行阶段需要兼顾高性能控制和低资源消耗的问题,提出一种新型事件触发快速有限时间控制方法。将高超声速变形飞行器模型转化为面向控制的模型以便于控制系统设计。使用快速有限时间控制技术设计姿态控制器,保证跟踪误差能够快速收敛。开发切换动态事件触发策略来降低执行机构动作频率,设计的过程已充分考虑并降低潜在的性能损失。使用李雅普诺夫理论证明闭环系统稳定和跟踪误差有限时间收敛。与传统有限时间控制相比,快速有限时间控制提高了闭环系统远离平衡点时收敛速率,事件触发机制有效降低执行机构动作频率。控制方法实现了针对高超声速变形飞行器的高性能控制,降低了飞行器系统资源消耗,未带来明显的性能损失。飞行仿真验证了所设计方法的有效性和优越性。
张豪 , 王鹏 , 汤国建 , 包为民 . 高超声速变外形飞行器事件触发有限时间控制[J]. 航空学报, 2023 , 44(15) : 528494 -528494 . DOI: 10.7527/S1000-6893.2023.28494
This paper proposes a novel event-triggered fast finite time sliding mode control for the hypersonic vehicle with frequent actuator deflection in the morphing phase. The original model of the hypersonic morphing vehicle is transformed into the control-oriented model, which is employed in the controller design. The fast finite time control theory is adopted to develop a control system for the hypersonic morphing phase. The switching dynamic event-triggering mechanism is introduced to reduce the frequency of actuator deflection. Meanwhile, the possible performance loss is fully considered in the procedure. The Lyapunov theory is utilized to prove the stability of the closed-loop system and the convergence of the tracking error. Compared with conventional finite-time control methods, fast finite-time control enhances the convergence rate when the system state is far from the equilibrium point. Furthermore, the event-triggering mechanism effectively reduces the frequency of actuating the actuator without obvious performance loss. Simulation verifies the effectiveness and excellent performance of the controller proposed.
1 | BAO C Y, WANG P, TANG G J. Integrated method of guidance, control and morphing for hypersonic morphing vehicle in glide phase[J]. Chinese Journal of Aeronautics, 2021, 34(5): 535-553. |
2 | BAO C Y, WANG P, TANG G J. Integrated guidance and control for hypersonic morphing missile based on variable span auxiliary control[J]. International Journal of Aerospace Engineering, 2019, 2019: 1-20. |
3 | HU K Y, LI W H, CHENG Z A. Fuzzy adaptive fault diagnosis and compensation for variable structure hypersonic vehicle with multiple faults[J]. PLoS One, 2021, 16(8): e0256200. |
4 | HU K Y, YANG C X, SUN W J. Adaptive sliding mode fault compensation for sensor faults of variable structure hypersonic vehicle[J]. Sensors, 2022, 22(4): 1523. |
5 | Lü X Z, YUAN C, BAO W M, et al. Numerical and experimental investigation of aerodynamic heat control of leading edge of hypersonic vehicle’s flexible skin[J].Science China Information Sciences, 2022, 65(10): 1-14. |
6 | DING Y B, YUE X K, CHEN G S, et al. Review of control and guidance technology on hypersonic vehicle[J]. Chinese Journal of Aeronautics, 2022, 35(7): 1-18. |
7 | CHU L L, LI Q, GU F, et al. Design, modeling, and control of morphing aircraft: A review[J]. Chinese Journal of Aeronautics, 2022, 35(5): 220-246. |
8 | 卢晓东, 张豪, 郭建国, 等. 高超声速飞行器滑模自适应迭代学习控制系统设计[J]. 西北工业大学学报, 2019, 37(6): 1120-1128. |
LU X D, ZHANG H, GUO J G, et al. Iterative learning control combination with adaptive sliding mode technique for a hypersonic vehicle[J]. Journal of Northwestern Polytechnical University, 2019, 37(6):1120-1128 (in Chinese). | |
9 | 郭嘉宝, 赵长见, 宋志国. 一种基于动态逆-滑模的变形飞行器姿态控制方法研究[J]. 航天控制, 2022, 40(4): 12-17. |
GUO J B, ZHAO C J, SONG Z G. A dynamic inverse-sliding mode based attitude control method for morphing aircraft[J]. Aerospace Control, 2022, 40(4): 12-17 (in Chinese). | |
10 | 路遥. 基于跟踪微分器的高超声速飞行器Backstepping控制[J]. 航空学报, 2021, 42(11):524737. |
LU Y. Backstepping control for hypersonic flight vehicles based on tracking differentiator[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 524737 (in Chinese). | |
11 | 王忠森,廖宇新,魏才盛,等.高超声速飞行器快速终端滑模保性能容错控制[J/OL].航空学报(2023-03-21)[2023-03-22].. |
WANG Z S, LIAO Y X, WEI C S, et al. Fault tolerant control of fast terminal sliding mode preserving performance of hypersonic vehicle[J/OL]. Acta Aeronautica et Astronautica Sinica (2023-03-21)[2023-03-22]. (in Chinese). | |
12 | 李政,于剑桥,赵新运.空空导弹敏捷转弯固定时间收敛滑模控制[J].航空学报,2023,44(8):327262. |
LI Z, YU J Q, ZHAO X Y. Fixed-time convergent sliding mode control for agile turn of air-to-air missiles. Acta Aeronautica et Astronautica Sinica,2023,44(8):327262 (in Chinese). | |
13 | 刘继承, 江驹, 阴浩博, 等. 高超声速飞行器自适应固定时间抗饱和控制[J]. 哈尔滨工程大学学报, 2022, 43(7)1013-1022. |
LIU J C, JIANG J, YIN H B, et al. Fixed-time antisaturation adaptive control of a hypersonic vehicle[J]. Journal of Harbin Engineering University, 2022, 43(7)1013-1022 (in Chinese). | |
14 | 魏启钊, 齐瑞云, 姜斌. 非最小相位高超声速飞行器自适应鲁棒容错控制[J]. 西北工业大学学报, 2021, 39(S1): 1-9. |
WEI Q Z, QI R Y, JIANG B. Robust adaptive fault tolerant control for non-minimum phase hypersonic vehicle[J]. Journal of Northwestern Polytechnical University, 2021, 39(S1): 1-9 (in Chinese). | |
15 | LIANG S, XU B, REN J R. Kalman-filter-based robust control for hypersonic flight vehicle with measurement noises[J]. Aerospace Science and Technology, 2021, 112: 106566. |
16 | LIU J C, JIANG J, YU C J, et al. Disturbance observer–based fixed-time robust control for constrained air-breathing hypersonic vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2022, 236(5): 957-974. |
17 | LV L, LIU X G, XIAO L, et al. A novel non-uniform optimal control approach for hypersonic cruise vehicle with waypoint and no-fly zone constraints[J]. International Journal of Systems Science, 2021, 52(13): 2704-2724. |
18 | SHI Y, WANG Z B. Onboard generation of optimal trajectories for hypersonic vehicles using deep learning[J]. Journal of Spacecraft and Rockets, 2021, 58(2): 400-414. |
19 | AN H, WU Q Q, WANG G, et al. Simplified longitudinal control of air-breathing hypersonic vehicles with hybrid actuators[J]. Aerospace Science and Technology, 2020, 104: 105936. |
20 | AN H, WU Q Q, WANG G, et al. Adaptive compound control of air-breathing hypersonic vehicles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4519-4532. |
21 | WU T C, WANG H L, YU Y, et al. Quantized fixed-time fault-tolerant attitude control for hypersonic reentry vehicles[J]. Applied Mathematical Modelling, 2021, 98: 143-160. |
22 | 常璧麟, 龙离军, 程杨, 等. 多重事件触发机制下四旋翼飞行器的姿态跟踪控制[J]. 西安交通大学学报, 2022, 56(3): 206-214. |
CHANG B L, LONG L J, CHENG Y, et al. Attitude tracking control of quadrotor aircraft under multi-event triggering mechanism[J]. Journal of Xi’an Jiaotong University, 2022, 56(3): 206-214 (in Chinese). | |
23 | 石永霞, 胡庆雷, 邵小东. 角速度受限下航天器姿态机动事件触发控制[J]. 中国科学(信息科学), 2022, 52(3): 506-520. |
SHI Y X, HU Q L, SHAO X D. Event-triggered attitude maneuver control of spacecraft under angular velocity constraints[J]. Scientia Sinica (Informationis), 2022, 52(3): 506-520 (in Chinese). | |
24 | 王帅磊, 周绍磊, 祁亚辉, 等. 多航天器集中事件触发分组姿态协同控制[J]. 兵器装备工程学报, 2021, 42(4):183-187. |
WANG S L, ZHOU S L, QI Y H, et al. Multi-spacecraft centralized event-triggered group attitude coordinated control[J]. Journal of Ordnance Equipment Engineering, 2021, 42(4):183-187 (in Chinese). | |
25 | LV M L, DE SCHUTTER B, BALDI S. Nonrecursive control for formation-containment of HFV swarms with dynamic event-triggered communication[J]. IEEE Transactions on Industrial Informatics, 2023, 19(3): 3188-3197. |
26 | CAO Z R, JIA T G, NIU Y G. Self-triggered sliding mode control for digital fly-by-wire aircraft system[J]. Journal of the Franklin Institute, 2020, 357(15): 10492-10512. |
27 | SHI Y, SHAO X L. Neural adaptive appointed-time control for flexible air-breathing hypersonic vehicles: An event-triggered case[J].Neural Computing and Applications, 2021, 33(15): 9545-9563. |
28 | AN H, GUO Z Y, WANG G, et al. Neural adaptive control of air-breathing hypersonic vehicles robust to actuator dynamics[J]. ISA Transactions, 2021, 116: 17-29. |
/
〈 |
|
〉 |