翼型不确定性量化中正交匹配追踪的应用
收稿日期: 2022-11-29
修回日期: 2023-02-17
录用日期: 2023-03-20
网络出版日期: 2023-03-31
基金资助
国家自然科学基金(52006045)
Application of orthogonal matching pursuit to airfoil uncertainty quantification
Received date: 2022-11-29
Revised date: 2023-02-17
Accepted date: 2023-03-20
Online published: 2023-03-31
Supported by
National Natural Science Foundation of China(52006045)
不确定性在实际系统中广泛存在,为了研究不确定性因素影响下系统输出的随机响应特性,传统的不确定性量化方法如蒙特卡洛采样、混沌多项式展开等需要大量的样本,制约了在飞机机翼等复杂系统中的应用。近年来,在信号处理领域发展迅速的压缩感知技术,利用原始信号的稀疏性可以用少量的样本精确重构信号。这一特性促使研究人员探索将压缩感知技术应用于不确定性量化研究中。以RAE2822实际翼型为研究对象,使用类函数/形函数变换将原始翼型参数化,考虑加工、装配过程和实际飞行工况下的几何不确定性,将压缩感知技术与混沌多项式展开相结合,利用正交匹配追踪算法实现多项式系数的稀疏重构,获得翼型气动力系数和流场参数在考虑几何不确定性影响下的均值和标准差,并与蒙特卡洛采样和满秩概率配点法获得的结果进行对比。通过对收敛性能、样本数需求和重构精度等方面的对比分析表明,正交匹配追踪算法能够利用相对较少的样本获得与传统不确定性量化方法相近的精度。考虑到实际系统的随机响应在混沌多项式基底上大多具有稀疏的展开形式,因此将压缩感知技术应用到不确定性量化中可以显著降低样本数需求,从而降低时间成本,提高计算效率。
胡汉铎 , 宋彦萍 , 俞建阳 , 刘瑶 , 陈浮 , 高文秀 . 翼型不确定性量化中正交匹配追踪的应用[J]. 航空学报, 2023 , 44(18) : 128327 -128327 . DOI: 10.7527/S1000-6893.2023.28327
Uncertainties exist widely in realistic systems. To evaluate the stochastic response of the system output with various uncertainties, traditional uncertainty quantification methods such as Monte Carlo Sampling (MCS) and Polynomial Chaos Expansion (PCE) require large quantities of samples, restricting their application to complex systems such as aircraft airfoils. The rapidly developed compressive sensing in signal processing field enables precise reconstruction of the signal based on the sparsity of original signals with only a small number of samples. This feature has attracted researchers to explore the application of compressive sensing to uncertainty quantification research. This study considers the geometrical uncertainty of the RAE2822 airfoil in manufacturing, assembly, and flight, and parameterizes the original shape with the Class-Shape Transformation (CST) method. We combine compressive sensing with polynomial chaos expansion for uncertainty quantification, and adopt the Orthogonal Matching Pursuit (OMP) algorithm to reconstruct the polynomial coefficients. In this way, the mean values and standard deviations of the aerodynamic forces and flow field quantities with geometrical uncertainty are obtained and compared to those of the Monte Carlo sampling and Full-Rank Probabilistic Collocations (FRPC) method. Comparison of convergence, sample number requirement and accuracy shows that the orthogonal matching pursuit can use fewer samples to obtain similar results as traditional methods. Since most of the stochastic responses of actual systems have sparse representations on polynomial chaos bases, the application of compressive sensing to uncertainty quantification can significantly decrease the required samples, thereby reducing time costs and improving computational efficiency.
1 | LI D C, ZHAO S W, RONCH A DA, et al. A review of modelling and analysis of morphing wings[J]. Progress in Aerospace Sciences, 2018, 100: 46-62. |
2 | 陈志远, 李璐祎. 参数不确定性下高效的可靠性灵敏度分析方法[J]. 航空学报, 2022, 43(9): 325881. |
CHEN Z Y, LI L Y. Efficient methods for reliability sensitivity analysis of inputs with distribution parameter uncertainty[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 325881 (in Chinese). | |
3 | 高文杰. 基于参数自适应遗传算法的某型机翼薄板装配可靠性优化[D]. 哈尔滨: 哈尔滨工程大学, 2020: 52-54. |
GAO W J. Reliability optimization of wing sheet assembly based on parameter adaptive genetic algorithm[D]. Harbin: Harbin Engineering University, 2020: 52-54 (in Chinese). | |
4 | 卜雪琴, 李皓, 黄平, 等. 二维机翼混合相结冰数值模拟[J]. 航空学报, 2020, 41(12): 124085. |
BU X Q, LI H, HUANG P, et al. Numerical simulation of mixed phase icing on two-dimensional airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124085 (in Chinese). | |
5 | 刘雪城, 梁华, 宗豪华, 等. NACA0012翼型等离子体冰形调控试验[J]. 航空学报, 2022, 43(9): 126283. |
LIU X C, LIANG H, ZONG H H, et al. Experiment on plasma ice shape modulation based on NACA0012 airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 126283 (in Chinese). | |
6 | 黄海亮, 陈跃良, 张柱柱, 等. 飞机结构常见腐蚀形式仿真研究进展[J]. 航空学报, 2021, 42(5): 524026. |
HUANG H L, CHEN Y L, ZHANG Z Z, et al. Research progress of corrosion simulation of aircraft structures[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 524026 (in Chinese). | |
7 | 邬晓敬. 气动外形优化设计中的不确定性及高维问题研究[D]. 西安: 西北工业大学, 2018: 39-42. |
WU X J. Research on uncertainty and high-dimensional problems in aerodynamic shape optimization design[D]. Xi'an: Northwestern Polytechnical University, 2018: 39-42 (in Chinese). | |
8 | 夏侯唐凡, 陈江涛, 邵志栋, 等. 随机和认知不确定性框架下的CFD模型确认度量综述[J]. 航空学报, 2022, 43(8): 025716. |
XIAHOU T F, CHEN J T, SHAO Z D, et al. Model validation metrics for CFD numerical simulation under aleatory and epistemic uncertainty[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 025716 (in Chinese). | |
9 | LOEVEN G J A, WITTEVEEN J A S, BIJL H. Probabilistic collocation: An efficient non-intrusive approach for arbitrarily distributed parametric uncertainties[C]∥ 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007. |
10 | LOEVEN A, BIJL H. Airfoil analysis with uncertain geometry using the probabilistic collocation method[C]∥ Proceedings of the 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; 16th AIAA/ASME/AHS Adaptive Structures Conference. Reston: AIAA, 2008. |
11 | 高远, 闫妍, 周磊, 等. 基于卷积神经网络和多项式混沌方法的翼型鲁棒性优化[J]. 航空工程进展, 2021, 12(2): 80-87. |
GAO Y, YAN Y, ZHOU L, et al. Airfoil robust optimization based on convolutional neural network and polynomial chaos method[J]. Advances in Aeronautical Science and Engineering, 2021, 12(2): 80-87 (in Chinese). | |
12 | 于佳鑫, 陈江涛, 王晓东, 等. 考虑几何不确定性的翼型随机参数化方法研究[J]. 工程热物理学报, 2021, 42(5): 1184-1192. |
YU J X, CHEN J T, WANG X D, et al. Research on stochastic parameterization of airfoil considering geometric uncertainty[J]. Journal of Engineering Thermophysics, 2021, 42(5): 1184-1192 (in Chinese). | |
13 | LIU S Y, WANG Y B, QIN N, et al. Quantification of airfoil aerodynamic uncertainty due to pressure-sensitive paint thickness[J]. AIAA Journal, 2020, 58(4): 1432-1440. |
14 | 许敬晖, 乔百杰, 滕光蓉, 等. 基于压缩感知的叶端定时信号参数辨识方法[J]. 航空学报, 2021, 42(5): 524229. |
XU J H, QIAO B J, TENG G R, et al. Parameter identification of blade tip timing signal using compressed sensing[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 524229 (in Chinese). | |
15 | CANDèS E J, ROMBERG J K, TAO T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223. |
16 | LIANG H, SUN Q, DU Q. Data-driven compressive sensing and applications in uncertainty quantification[J]. Journal of Computational Physics, 2018, 374: 787-802. |
17 | YANG X, LI W X, TARTAKOVSKY A. Sliced-inverse-regression: Aided rotated compressive sensing method for uncertainty quantification[J]. ASA Journal on Uncertainty Quantification, 2018, 6(4): 1532-1554. |
18 | 陈江涛, 章超, 刘骁, 等. 基于稀疏多项式混沌方法的不确定性量化分析[J]. 航空学报, 2020, 41(3): 123382. |
CHEN J T, ZHANG C, LIU X, et al. Uncertainty quantification analysis with sparse polynomial chaos method[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 123382 (in Chinese). | |
19 | LU Q H, WANG L, LI L S. Efficient uncertainty quantification of stochastic problems in CFD by combination of compressed sensing and POD-Kriging[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 396: 115118. |
20 | 赵欢, 高正红, 夏露. 高速自然层流翼型高效气动稳健优化设计方法[J]. 航空学报, 2022, 43(1): 124894. |
ZHAO H, GAO Z H, XIA L. Efficient robust aerodynamic design optimization method for high-speed NLF airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 124894 (in Chinese). | |
21 | WIENER N. The homogeneous chaos[J]. American Journal of Mathematics, 1938, 60(4): 897-936. |
22 | 王坤, 陈浮, 俞建阳, 等. 基于满秩概率配置法的叶片安装角不确定性分析[J]. 工程热物理学报, 2018, 39(12): 2634-2642. |
WANG K, CHEN F, YU J Y, et al. Uncertainty quantification in blade setting angle based on full rank probabilistic collocation method[J]. Journal of Engineering Thermophysics, 2018, 39(12): 2634-2642 (in Chinese). | |
23 | ZHANG W, WANG Q, ZENG F Z, et al. An adaptive sequential enhanced PCE approach and its application in aerodynamic uncertainty quantification[J]. Aerospace Science and Technology, 2021, 117: 106911. |
24 | COOK P H, MCDONALD M A, FIRMIN M. Aerofoil RAE2822 pressure distributions, and boundary layer and wake measurements, experimental data base for computer program assessment: AGARD-1979-0138 [R]. Paris: AGARD, 1979. |
25 | KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft, 2008, 45(1): 142-158. |
26 | MARUYAMA D, LIU D S, G?RTZ S. An efficient aerodynamic shape optimization framework for robust design of airfoils using surrogate models[C]∥ ECCOMAS Congress 2016 on Computational Methods in Applied Sciences and Engineering. Crete lsland: National Technical University of Athens (NTUA), 2016:8787-8800. |
27 | ABDALLAH I, NATARAJAN A, S?RENSEN J D. Impact of uncertainty in airfoil characteristics on wind turbine extreme loads[J]. Renewable Energy, 2015, 75: 283-300. |
/
〈 |
|
〉 |