电子电气工程与控制

固定翼集群无人机空中模拟对接技术

  • 许勇 ,
  • 颜鸿涛 ,
  • 贾涛 ,
  • 马跃 ,
  • 邓泽华 ,
  • 刘多能
展开
  • 1.中国空气动力研究与发展中心 空天技术研究所,绵阳 621000
    2.北京流体动力科学研究中心,北京 100011

收稿日期: 2021-10-19

  修回日期: 2021-11-05

  录用日期: 2022-01-02

  网络出版日期: 2023-02-01

基金资助

科技部科技创新2030-重大项目(2020AAA0104801);国家自然科学基金(61903364)

Aerial simulation docking technology of fixed-wing clustering UAVs

  • Yong XU ,
  • Hongtao YAN ,
  • Tao JIA ,
  • Yue MA ,
  • Zehua DENG ,
  • Duoneng LIU
Expand
  • 1.Aerospace Technology Institute,China Aevodynamics Research and Development Center,Mianyang 621000,China
    2.Beijing Aerohydrodynamic Frontier Research Center,Beijing 100011,China

Received date: 2021-10-19

  Revised date: 2021-11-05

  Accepted date: 2022-01-02

  Online published: 2023-02-01

Supported by

Science and Technology Innovation 2030 Major Project(2020AAA0104801);National Natural Science Foundation of China(61903364)

摘要

自主空中加油技术对于提高无人机(UAV)续航能力,扩大作战半径,增加载荷重量以及提升战略部署等方面有着重要的意义,是未来智能集群无人机系统的必备技术。本文以“无人争锋(UI-STRIVE)”空中握手比赛为背景,对固定翼集群无人机空中模拟对接相关技术及策略进行了研究。首先,针对固定翼集群无人机飞行速度快、编队密集程度高等特点,设计了集群无人机空中对接流程以及基于Dubins路径规划的时间最短的追机方案,并采用非线性制导律进行航路跟踪;其次,基于模拟锥套的先验信息设计了一组弱分类器,并通过级联的方式实现对模拟锥套的快速检测;然后,设计了沿加油机航线方向进行精确对接的策略,并结合无人机姿态先验以及模拟锥套尺寸信息推导了精确对接阶段制导参数解算方法;最后,设计了相应的固定翼集群无人机系统,并以4机编队参加了第2021届“无人争锋”空中握手比赛,参赛结果验证了本文所提出固定翼集群无人机系统以及其技术和策略的可行性。

本文引用格式

许勇 , 颜鸿涛 , 贾涛 , 马跃 , 邓泽华 , 刘多能 . 固定翼集群无人机空中模拟对接技术[J]. 航空学报, 2023 , 44(5) : 326539 -326539 . DOI: 10.7827/S1000-6893.2021.26539

Abstract

Autonomous aerial refueling technology is of great significance for improving the endurance of Unmanned Aerial Vehicle (UAV), expanding the combat radius, increasing the weight of the payload, and enhancing strategic deployment. It is an essential technology for future intelligent clustering UAV systems. In this paper, we study the related aerial simulation docking technologies and strategies of the fixed-wing clustering UAVs for the simulation docking race of UI⁃STRIVE. First, considering the characteristics of fast speed and high formation density of the clustering UAVs, we design the aerial simulation docking pipeline of the clustering UAV. The shortest time pursuit scheme is also designed based on the Dubins path, and the nonlinear guidance law is used for route tracking. Second, we design a set of weak classifiers to classify the targets based on the prior information of the simulation drogue, and the detection process is accelerated by cascading these classifiers. Third, for the precise docking stage, we design a strategy for precise docking along the course angle, and compute the visual guidance parameters by integrating the attitudes prior of UAV and the size of the simulation drogue. We also develop a corresponding fixed-wing clustering UAVs system, and participate in the 2021 simulation docking race of UI⁃STRIVE in a formation of 4 UAVs. Results demonstrate the feasibility and reliability of the proposed fixed-wing clustering UAVs system and simulation docking technologies.

参考文献

1 刘多能. 固定翼无人机动态滑翔机理与航迹优化研究[D]. 长沙: 国防科学技术大学, 2016: 1-5.
  LIU D N. Research on dynamic gliding mechanism and track optimization of fixed-wing UAV[D]. Changsha: National University of Defense Technology, 2016: 1-5. (in Chinese)
2 钟德星, 李永强, 李严桵. 无人机自主空中加油技术现状及发展趋势[J]. 航空科学技术201425(5): 1-6.
  ZHONG D X, LI Y Q, LI Y R. State-of-the-art and tendency of autonomous aerial refueling technologies for unmanned aerial vehicles[J]. Aeronautical Science & Technology201425(5): 1-6 (in Chinese).
3 马跃博. 基于卷积神经网络的自主空中加油识别测量技术研究[D]. 成都: 中国科学院大学(中国科学院光电技术研究所), 2020: 1- 14.
  MA Y B. Research on autonomous aerial refueling recognition and measurement technology based on convolutional neural network[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2020: 1- 14. (in Chinese)
4 DUBINS L. On curves of minimal length with a con-straint on average curvature, and with prescribed initial and terminal positions and tangents[J]. American Journal of Mathermatics195779(3):497-516.
5 SONG X Q, HU S Q. 2D path planning with dubins-path-based A* algorithm for a fixed-wing UAV[C]∥ 2017 3rd IEEE International Conference on Control Science and Systems Engineering. Piscataway: IEEE Press, 2017: 69-73.
6 BURNS B, BLUE P, ZOLLARS M. Autonomous control for automated aerial refueling with minimum-time rendezvous: AIAA-2007-6739[R]. Reston: AIAA, 2007.
7 WILSON D B, SOTO M á T, G?KTO?AN A H, et al. Real-time rendezvous point selection for a nonholonomic vehicle[C]∥ 2013 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2013 : 3941-3946.
8 龚全铨, 袁锁中, 张进. 基于Dubins路径的空中加油自主会合制导与控制[J]. 哈尔滨工程大学学报201637(8): 1081-1088.
  GONG Q Q, YUAN S Z, ZHANG J. Guidance and control of autonomous rendezvous in aerial refueling based on Dubins path planning[J]. Journal of Harbin Engineering University201637(8): 1081-1088 (in Chinese).
9 GUELMAN M. A qualitative study of proportional navigation[J]. IEEE Transactions on Aerospace and Electronic Systems1971, AES-7(4): 637-643.
10 SMITH A L. Proportional navigation with adaptive terminal guidance for aircraft rendezvous[J]. Journal of Guidance, Control, and Dynamics200831(6): 1832-1836.
11 PARK S, DEYST J, HOW J. A new nonlinear guidance logic for trajectory tracking: AIAA-2004-4900[R]. Reston: AIAA, 2004.
12 王祥科, 刘志宏, 丛一睿, 等. 小型固定翼无人机集群综述和未来发展[J]. 航空学报202041(4): 023732.
  WANG X K, LIU Z H, CONG Y R, et al. Miniature fixed-wing UAV swarms: Review and outlook[J]. Acta Aeronautica et Astronautica Sinica202041(4): 023732 (in Chinese).
13 WANG X K. Multi-agent distributed coordination control: Developments and directions via graph viewpoint[J]. Neurocomputing2016199: 204-218.
14 吴立尧, 韩维, 张勇, 等. 基于领航-跟随的有人/无人机编队队形保持控制[J]. 控制与决策202136(10): 2435-2441.
  WU L Y, HAN W, ZHANG Y, et al. Formation keeping control for manned/unmanned aerial vehicle formation based on leader-follower strategy[J]. Control and Decision202136(10): 2435-2441 (in Chinese).
15 胡阳修, 贺亮, 赵长春, 等. 基于路径跟随的改进领航-跟随无人机协同编队方法[J]. 飞控与探测20214(2): 26-35.
  HU Y X, HE L, ZHAO C C, et al. Improved method of leader-follower UAV coordinated formation based on path following[J]. Flight Control & Detection20214(2): 26-35 (in Chinese).
16 邵壮, 祝小平, 周洲, 等. 三维动态环境下多无人机编队分布式保持控制[J]. 控制与决策201631(6): 1065-1072.
  SHAO Z, ZHU X P, ZHOU Z, et al. Distributed formation keeping control of UAVs in 3-D dynamic environment[J]. Control and Decision201631(6): 1065-1072 (in Chinese).
17 KIM S, KIM Y. Optimum design of three-dimensional behavioural decentralized controller for UAV formation flight[J]. Engineering Optimization200941(3): 199-224.
18 MATTEI M, SCORDAMAGLIA V. Task priority approach to the coordinated control of a team of flying vehicles in the presence of obstacles[J]. IET Control Theory & Applications20126(13): 2103-2110.
19 VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features[C]∥ Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2001: 2103-2110.
20 FELZENSZWALB P, MCALLESTER D, RAMANAN D. A discriminatively trained, multiscale, deformable part model[C]∥ 2008 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2008: 1-8.
21 LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single Shot multiBox Detector[C]∥ Computer Vision - ECCV 2016. Cham: Springer International Publishing, 2016: 21-37.
22 BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[DB/OL]. arXiv preprint2004.10934, 2020.
23 WANG Q, ZHANG L, BERTINETTO L, et al. Fast online object tracking and segmentation: A unifying approach[C]∥ 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2019: 1328-1338.
24 HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence201537(9): 1904-1916.
25 LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]∥ 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 936-944.
26 REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence201739(6): 1137-1149.
27 LAW H, DENG J. CornerNet: Detecting objects as paired keypoints[J]. International Journal of Computer Vision2020128(3): 642-656.
28 DUAN K W, BAI S, XIE L X, et al. CenterNet: Keypoint triplets for object detection[C]∥ 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2019: 6568-6577.
29 TIAN Z, SHEN C H, CHEN H, et al. FCOS: Fully convolutional one-stage object detection[C]∥ 2019 IEEE/ CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2019: 9626-9635.
30 CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[DB/OL]. arXiv preprint2005.12872, 2020.
31 FORNACIARI M. A fast and effective ellipse detector for embedded vision applications[J]. Pattern Recognition201447(11): 3693-3708.
32 MENG C, LI Z X, BAI X Z, et al. Arc adjacency matrix-based fast ellipse detection[J]. IEEE Transactions on Image Processing202029: 4406-4420.
33 CHEN Q, WU H Y, WADA T. Camera calibration with two arbitrary coplanar circles[C]∥ Proceedings of the 2004 European Conference on Computer Vision (ECCV). Berlin: Springer, 2004: 521-532.
34 PAUL F, JéR?ME M, J?RN R. Visual-inertial calibration toolbox Kalibr[EB/OL]. (2021-10-15)[2021-10-19]. .
文章导航

/