低速冲击损伤对复材加筋板压缩性能的影响
收稿日期: 2023-01-12
修回日期: 2023-02-20
录用日期: 2023-03-21
网络出版日期: 2023-03-21
基金资助
国家重点研发计划(2019YFA0706800);民机科研项目(MJZ5-3N21)
Effect of low-velocity impact damage on compressive properties of composite stiffened panels
Received date: 2023-01-12
Revised date: 2023-02-20
Accepted date: 2023-03-21
Online published: 2023-03-21
Supported by
National Key R&D Program of China(2019YFA0706800);Civil Aircraft Scientific Research Project(MJZ5-3N21)
对无损伤及含低速冲击损伤的复合材料加筋板进行了压缩试验,分别采用数字图像相关方法(DIC)、电测法对加筋板屈曲后屈曲行为进行了实时测量。试验结果表明:冲击损伤对屈曲载荷、屈曲模态影响不明显,对破坏载荷及破坏模式影响较大;相比于完好加筋板,含冲击损伤加筋板蒙皮纤维损伤沿着横向扩展,导致结构提前破坏,强度降幅达30%。随后,采用软化夹杂法对冲击损伤进行了等效简化,并基于改进的Tsai-Wu准则、二次应力准则建立了复合材料加筋板渐进损伤有限元分析模型,分别对完好及含冲击损伤加筋板压缩后屈曲失效过程进行了模拟。与试验结果相比,预测的屈曲载荷误差小于1%,破坏载荷误差小于6%,屈曲模态、失效过程及破坏模式均与试验结果一致。最后,基于有限元分析方法讨论了蒙皮上冲击损伤位置对加筋板压缩性能的影响,分析得出:冲击损伤位置对屈曲载荷、屈曲模态影响较小,对破坏载荷和破坏模式影响较大,特别是当冲击损伤位于长桁帽底蒙皮波谷时引起的强度降幅最为显著。
杨钧超 , 王雪明 , 陈向明 , 邹鹏 , 王喆 . 低速冲击损伤对复材加筋板压缩性能的影响[J]. 航空学报, 2023 , 44(20) : 228498 -228498 . DOI: 10.7527/S1000-6893.2023.28498
Compression tests were carried out on intact and low-velocity impact damage composite stiffened panels. The post-buckling behaviors of stiffened panels were measured in real time using Digital Image Correlation (DIC) and electrical measurement methods respectively. The test results show that the impact damage has no significant impact on the buckling load and buckling mode, but has a greater impact on the failure load and failure mode. Compared with the intact stiffened panel, the skin fiber damage of the stiffened panel with impact damage extends along the transverse direction, leading to the early failure of the structure, with a strength reduction of 30%. Subsequently, the impact damage was equivalent simplified by the softening inclusion method, and the progressive damage finite element analysis model of composite stiffened panel was established based on the improved Tsai-Wu criterion and the secondary stress criterion. The post-buckling failure processes of intact and impact damaged stiffened panels were simulated respectively. Compared with the test results, the predicted buckling load error is less than 1%, and the failure load error is less than 6%. The buckling mode, failure process and failure mode are consistent with the test results. Finally, based on the finite element analysis method, the effects of impact damage location on the compression performance of stiffened panels were discussed. The impact damage location has a small impact on the buckling load and buckling mode, but a large impact on the failure load and failure mode, especially when the impact damage is located in the wave valley of the bottom skin of the stiffener cap, the strength reduction is the most significant.
1 | 杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1): 1-10. |
DU S Y, GUAN Z D. Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinica, 2008, 25(1): 1-10 (in Chinese). | |
2 | 赵天, 李营, 张超, 等. 高性能航空复合材料结构的关键力学问题研究进展[J]. 航空学报, 2022, 43(6): 56-98. |
ZHAO T, LI Y, ZHANG C, et al. Fundamental mechanical problems in high-performance aerospace composite structures: state-of-art review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 56-98 (in Chinese). | |
3 | KUMAR N J, BABU P R, PANDU R. Investigations on buckling behaviour of laminated curved composite stiffened panels[J]. Applied Composite Materials, 2014, 21(2): 359-376. |
4 | GENG X L, JI F F, WANG J, et al. Experimental and numerical investigations of compression stability of stiffened composite panel with ply interleaving[J]. Journal of Composite Materials, 2017, 51(26): 002199831769239. |
5 | 曹勇, 张超. 薄层复合材料冲击损伤行为研究进展[J]. 航空学报, 2022, 43(6): 525323. |
CAO Y, ZHANG C. Impact damage behavior of thin-ply composites: A review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 525323 (in Chinese). | |
6 | 崔德刚. 浅谈民用大飞机结构技术的发展[J]. 航空学报, 2008, 29(3): 573-582. |
CUI D G. Structure technology development of large commercial aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3): 573-582 (in Chinese). | |
7 | GREENHALGH E, MEEKS C, CLARKE A, et al. The effect of defects on the performance of post-buckled CFRP stringer-stiffened panels[J]. Composites Part A: Applied Science and Manufacturing, 2003, 34(7): 623-633. |
8 | GREENHALGH E, SINGH S, HUGHES D, et al. Impact damage resistance and tolerance of stringer stiffened composite structures[J]. Plastics, Rubber and Composites, 1999, 28(5): 228-251. |
9 | MALHOTRA A, GUILD F J, PAVIER M J. Edge impact to composite laminates: experiments and simulations[J]. Journal of Materials Science, 2008, 43(20): 6661-6667. |
10 | TAN R M, GUAN Z D, SUN W, et al. Experiment investigation on impact damage and influences on compression behaviors of single T-stiffened composite panels[J]. Composite Structures, 2018, 203: 486-497. |
11 | TAN R M, XU J F, GUAN Z D, et al. Experimental study on effect of impact locations on damage formation and compression behavior of stiffened composite panels with L-shaped stiffener[J]. Thin-Walled Structures, 2020, 150: 106707. |
12 | FENG Y, ZHANG H Y, TAN X F, et al. Effect of impact damage positions on the buckling and post-buckling behaviors of stiffened composite panel[J]. Composite Structures, 2016, 155: 184-196. |
13 | LI N, CHEN P H. Experimental investigation on edge impact damage and Compression-After-Impact (CAI) behavior of stiffened composite panels[J]. Composite Structures, 2016, 138: 134-150. |
14 | SEBASTIAN C, PATTERSON E A. Calibration of a digital image correlation system[J]. Experimental Techniques, 2015, 39(1): 21-29. |
15 | KOLANU N R, PRAKASH S S, RAMJI M. Experimental study on compressive behavior of GFRP stiffened panels using digital image correlation[J]. Ocean Engineering, 2016, 114: 290-302. |
16 | 阳奥, 陈普会, 孔斌, 等. 数字图像相关技术在复合材料加筋曲板压缩试验中的应用[J]. 复合材料学报, 2020, 37(10): 2439-2451. |
YANG A, CHEN P H, KONG B, et al. Application of digital image correlation technology in compression test of stringer stiffened composite curved panels[J]. Acta Materiae Compositae Sinica, 2020, 37(10):2439-2451 (in Chinese). | |
17 | 任涛, 彭昂, 吴大可, 等. 冲击位置对复合材料加筋板冲击后压缩行为影响试验[J]. 复合材料学报, 2022, 39(2): 788-801. |
REN T, PENG A, WU D K, et al. Experimental study on the influence of impact positions on compression-after-impact behavior of composite stiffened panels[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 788-801 (in Chinese). | |
18 | LI N, CHEN P H. Failure prediction of T-stiffened composite panels subjected to compression after edge impact[J]. Composite Structures, 2017, 162: 210-226. |
19 | LI N, CHEN P H. Prediction of Compression-After-Edge-Impact (CAEI) behaviour in composite panel stiffened with I-shaped stiffeners[J]. Composites Part B: Engineering, 2017, 110: 402-419. |
20 | OUYANG T, BAO R, SUN W, et al. A fast and efficient numerical prediction of compression after impact (CAI) strength of composite laminates and structures[J]. Thin-Walled Structures, 2020, 148: 106588. |
21 | TSAI S W. A general theory of strength for anisotropic materials[J]. Journal of Composite Materials, 1971, 5(1): 58-80. |
22 | CHEN X M, SUN X S, CHEN P H, et al. Rationalized improvement of Tsai?Wu failure criterion considering different failure modes of composite materials[J]. Composite Structures, 2021, 256: 113120. |
23 | PINHO S, DARVIZEH R, ROBINSON P, et al. Material and structural response of polymer-matrix fibre-reinforced composites[J]. Journal of Composite Materials, 2012, 46(19-20): 2313-2341. |
24 | LINDE P, DE BOER H. Modelling of inter-rivet buckling of hybrid composites[J]. Composite Structures, 2006, 73(2): 221-228. |
25 | 杨钧超, 陈向明, 邹鹏, 等. 复合材料层合板剪切稳定性试验及强度预测[J]. 复合材料学报, 2023, 40(3): 1707-1717. |
YANG J C, CHEN X M, ZOU P, et al. Shear stability test and strength prediction of composite laminates[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1707-1717 (in Chinese). | |
26 | CHEN X M, SUN X S, CHEN P H, et al. A delamination failure criterion considering the effects of through-thickness compression on the interlaminar shear failure of composite laminates[J]. Composite Structures, 2020, 241: 112121. |
27 | REEDER J R. An evaluation of mixed-mode delamination failure criteria[R]. NASA Technical Memorandum 104210, 1992. |
28 | WANG B W, CHEN X M, WANG W Z, et al. Post-buckling failure analysis of composite stiffened panels considering the mode III fracture[J]. Journal of Composite Materials, 2022, 56(3): 1-13. |
29 | REITINGER R, RAMM E. Buckling and imperfection sensitivity in the optimization of shell structures[J]. Thin-Walled Structures, 1995, 23(1-4): 159-177. |
/
〈 |
|
〉 |