基于混沌多项式的RBCC飞行器上升段鲁棒轨迹快速优化
收稿日期: 2022-12-02
修回日期: 2022-12-26
录用日期: 2023-03-16
网络出版日期: 2023-03-21
基金资助
国家自然科学基金(11602296);陕西省自然科学基础研究计划(2019JM-434);中央高校基本科研业务费专项资金(G2022KY0613)
Rapid robust trajectory optimization for RBCC vehicle ascent based on polynomial chaos
Received date: 2022-12-02
Revised date: 2022-12-26
Accepted date: 2023-03-16
Online published: 2023-03-21
Supported by
National Natural Science Foundation of China(11602296);Natural Science Basis Research Plan in Shaanxi Province of China(2019JM-434);Fundamental Research Funds for the Central Universities(G2022KY0613)
针对火箭基组合循环(RBCC)高超声速飞行器上升段轨迹设计所具有的动力系统工作模态复杂、推力与飞行状态存在强耦合、模型强非线性、存在多种复杂约束限制和参数不确定性因素影响等典型特征,提出了一种基于非嵌入式混沌多项式、高斯求积法和序列凸优化的RBCC动力上升段鲁棒轨迹优化方法,以提高轨迹的抗干扰能力和过程可靠性。首先,构建了考虑参数不确定性的RBCC高超声速上升段鲁棒轨迹优化模型,并设计了基于高斯求积与非嵌入式混沌多项式的不确定性量化传播算法,从而将其转化为维数扩展的确定性轨迹优化问题;随后,基于凸优化理论对该问题进行凸化和离散,设计了一种基于序列凸优化算法的轨迹优化求解策略,以实现对该高维确定性问题的快速求解。某空基投放上升轨迹优化结果表明,基于所构建模型和轨迹优化方法可以有效地完成RBCC高超声速飞行器上升段鲁棒轨迹优化,优化结果符合RBCC动力系统工作特点;与传统确定性轨迹优化算法相比,所提方法能够有效降低随机干扰对上升段轨迹的影响,从而提升轨迹的可靠性与鲁棒性。
闫循良 , 王培臣 , 王舒眉 , 杨宇轩 , 王宽 . 基于混沌多项式的RBCC飞行器上升段鲁棒轨迹快速优化[J]. 航空学报, 2023 , 44(21) : 528349 -528349 . DOI: 10.7527/S1000-6893.2023.28349
The ascent trajectory design for Rocket-Based Combined Cycle (RBCC) hypersonic vehicle has many typical characteristics, including complex power system working modes, strong coupling between thrust and flight state, highly nonlinear models, numerous complex constraints, parameter uncertainties, etc. In this paper, a robust trajectory optimization method for RBCC power ascent based on non-intrusive polynomial chaos, the Gaussian quadrature strategy, and sequential convex optimization is proposed to enhance the trajectory’s anti-interference ability and process reliability. Firstly, a robust trajectory optimization model for the RBCC hypersonic ascent, accounting for parameter uncertainties, is established. An uncertainty quantification propagation algorithm based on the Gaussian quadrature strategy and non-intrusive polynomial chaos is designed to transform the robust optimization model into a deterministic trajectory optimization problem with extended dimensions. Then, the extend model is convexified and discretized using convex optimization theory, and a trajectory optimization solution strategy based on sequential convex optimization algorithm is established to achieve a solution of this high-dimensional deterministic optimization problem. The optimaization results of a certain air-based vehicle’s ascent trajectory indicate that based on the constructed model and trajectory method, the robust trajectory optimization of the ascent phase of the RBCC hypersonic aircraft can be effectively completed, and the optimization results are in line with the working characteristics of the RBCC power system. Compared with the traditional deterministic trajectory optimization algorithm, the proposed method can effectively reduce the influence of random disturbances on the ascent trajectory, thereby improving the reliability and robustness of the trajectory.
1 | 王亚军, 何国强, 秦飞 等. 火箭冲压组合动力研究进展[J]. 宇航学报, 2019, 40(10): 1126-1133. |
WANG Y J, HE G Q, QIN F, et al. Research progress of rocket based combined cycle engines[J]. Journal of Astronautics, 2019, 40(10): 1125-1133 (in Chinese). | |
2 | 阮建刚, 何国强, 吕翔. RBCC-RKT两级入轨飞行器飞行轨迹优化方法[J]. 航空学报, 2014, 35(5): 1284-1291. |
RUAN J G, HE G Q, LV X. Trajectory optimization method in two-stage-to-orbit RBCC-RKT launch Vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5): 1284-1291 (in Chinese). | |
3 | OLDS J, BUDIANTO I. Constant dynamic pressure trajectory simulation with post[C]∥AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1998: 1-12. |
4 | 孙佩华, 刘燕斌, 陈柏屹. 基于预置动压的高超声速飞行器上升段轨迹设计[J]. 飞行力学, 2017, 35(5):57-61. |
SUN P H, LIU Y B, CHEN B Y. Ascent trajectory design of hypersonic vehicle based on preset dynamic pressure[J]. Flight Dynamics, 2017, 35(5):57-61 (in Chinese). | |
5 | 李惠峰, 李昭莹. 高超声速飞行器上升段最优制导间接法研究[J]. 宇航学报, 2011, 32(2): 297-302. |
LI H F, LI Z Y. Indirect method of optimal ascent guidance for hypersonic vehicle[J]. Journal of Astronautics, 2011, 32(2): 297-302 (in Chinese). | |
6 | DEREK J, DRISCOLL F. Minimum-fuel ascent of a hypersonic vehicle using surrogate optimization[J]. Journal of Aircraft, 2014, 51(6): 1973-1986. |
7 | 龚春林, 韩璐, 谷良贤. 适应于RBCC运载器的轨迹优化建模研究[J]. 宇航学报, 2013, 34(12): 1592-1598. |
GONG C L, HAN L, GU L X. Research on modeling of trajectory optimization for RBCC-powered RLV[J]. Journal of Astronautics, 2013, 34(12): 1592-1598. | |
8 | 周宏宇, 王小刚, 崔乃刚 等. 基于hp自适应伪谱法的组合动力可重复使用运载器轨迹优化[J]. 中国惯性技术学报, 2016, 24(6): 832-837. |
ZHOU H Y, WANG X G, CUI N G, et al. Trajectory optimization of reusable vehicle with combined power based on hp adaptive pseudospectral algorithm [J]. Journal of Chinese Inertial Technology, 2016, 24(6): 832-837. | |
9 | WEI J L, TANG X J, YAN J. Costate estimation for a multiple-interval pseudospectral method using collocation at the flipped Legendre-Gauss-Radau points [J]. IEEE/CAA Journal of Automatica Sinica, 2018, 12: 1-15. |
10 | Yang S B, Cui T, Hao X Y, et al. Trajectory optimization for a ramjet-powered vehicle in ascent phase via the Gauss pseudospectral method [J]. Aerospace Science and Technology, 2017, 67: 88-95. |
11 | SONG J, SUA H Q. The ascent trajectory optimization of two-stage-to-orbit aerospace plane based on pseudospectral method [J]. Procedia Engineering, 2015, 99: 1044-1048. |
12 | ZHOU H Y, WANG X G, BAI Y L, et al. Ascent phase trajectory optimization for vehicle with multi-combined cycle engine based on improved particle swarm optimization[J]. Acta Astronautica, 2017, 140: 156-165. |
13 | LIU X F, LU P, PAN B F. Survey of convex optimization for aerospace applications[J]. Astrodynamics, 2017, 1(1): 23-40. |
14 | LU P, LIU X F. Solving nonconvex optimal control problems by convex optimization[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3):750-765. |
15 | 罗哲, 王舒眉, 闫循良, 等. RBCC动力高超声速飞行器上升段轨迹优化设计[J]. 红外与激光工程, 2022, 51(8): 478-485. |
LUO Z, WANG S M, YAN X L, et al. Trajectory optimization design of ascending stage of RBCC powered hypersonic vehicle [J]. Infrared and Laser Engineering, 2022, 51(8): 478-485. | |
16 | LIU X F, SHEN Z J, LU P, Entry trajectory optimization by second-order cone programming[J]. Journal of Guidance, Control, and Dynamics, 2015, 39(2): 227-241. |
17 | LU P, LIU X F, Autonomous trajectory planning for rendezvous and proximity operations by conic optimization[J]. Journal of Guidance, Control, and Dynamics. 2013, 36(2): 375-389. |
18 | SONG Z Y, WANG C. Powered soft landing guidance method for launchers with non-cluster configured engines[J]. Acta Astronautica, 2021, 189: 379-390. |
19 | LIU X F. Fuel-optimal rocket landing with aerodynamic controls[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(1): 65-76. |
20 | 陈琦, 王中原, 常思江,等. 不确定飞行环境下的滑翔制导炮弹方案弹道优化[J]. 航空学报, 2014, 35(9): 2593-2604. |
CHEN Q, WANG Z Y, CHANG S J, et al. Optimal trajectory design under uncertainty for a gliding guided projectile[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9): 2593-2604 (in Chinese). | |
21 | YANG Z, LUO Y Z, ZHANG J. Robust planning of nonlinear rendezvous with uncertainty[J]. Journal of Guidance Control and Dynamics, 2017, 40(8): 1954-1967. |
22 | FISHER J, BHATTACHARYA R. Optimal trajectory generation with probabilistic system uncertainty using polynomial chaos[J]. Journal of Dynamic Systems Measurement and Control, 2011, 133(1): 014501. |
23 | WANG F, YANG S, XIONG F F, et al. Robust trajectory optimization using polynomial chaos and convex optimization[J]. Aerospace Science and Technology, 2019, 92(2): 314-325. |
24 | LI X, NAIR P B, ZHANG Z G. Aircraft robust trajectory optimization using nonintrusive polynomial chaos[J]. Journal of Aircraft, 2014, 51(5): 1592-1603. |
25 | JIANG X Q, LI S. Uncertainty quantification for mars atmospheric entry using polynomial chaos and spectral decomposition[C]∥AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2018:1-18. |
26 | XIONG F F, Chen S S, XIONG Y. Dynamic system uncertainty propagation using polynomial chaos[J]. Chinese Journal of Aeronautics, 2014, 27(5): 1156-1170. |
27 | HOSDER S, WALTERS R W, BALCH M. Point-collocation nonintrusive polynomial chaos method for stochastic computational fluid dynamics[J]. AIAA Journal, 2010, 48(12):2721-2730. |
28 | JIANG X Q, LI S. Mars entry trajectory planning using robust optimization and uncertainty quantification[J]. Acta Astronautica, 2019, 161: 249-261. |
29 | 杨奔, 雷建长, 王宇航. 考虑气动参数扰动的再入轨迹快速优化方法[J]. 力学学报, 2020, 52(6): 67-77. |
YANG B, LEI J C, WANG Y H. Fast optimization method of reentry trajectory considering aerodynamic parameter perturbation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6):67-77 (in Chinese). | |
30 | 杨奔, 李天任, 马晓媛. 基于序列凸优化的多约束轨迹快速优化[J]. 航天控制, 2020, 38(3): 25-30. |
YANG B, LI T R, MA X Y. Fast multi-constraints trajectory optimization based on sequence convex optimization[J]. Aerospace Control, 2020, 38(3): 25-30 (in Chinese). | |
31 | ELDRED M S, WEBSTER C G, CONSTANTINE P G. Evaluation of non-intrusive approaches for wiener-askey generalized polynomial chaos[C]∥49th AIAA Structural Dynamics and Materials Conference. Reston: AIAA, 2008. |
/
〈 |
|
〉 |