电子电气工程与控制

基于P-CS模型与数字孪生的星载天线反射器形面鲁棒性控制方法

  • 何佳琦 ,
  • 吴伟达 ,
  • 罗阳军
展开
  • 1.大连理工大学 航空航天学院,大连  116024
    2.哈尔滨工业大学(深圳) 理学院,深圳  518055
.E-mail: yangjunluo@hit.edu.cn

收稿日期: 2022-12-01

  修回日期: 2023-02-01

  录用日期: 2023-03-07

  网络出版日期: 2023-03-21

基金资助

国家自然科学基金(11972104);深圳市高等院校稳定支持计划重点项目(GXWD20220817133329001)

A robust shape control method for space-borne antenna reflectors based on P-CS uncertainty quantification model and digital twin

  • Jiaqi HE ,
  • Weida WU ,
  • Yangjun LUO
Expand
  • 1.School of Aeronautics and Astronautics,Dalian University of Technology,Dalian  116024,China
    2.School of Science,Harbin Institute of Technology (Shenzhen),Shenzhen  518055,China

Received date: 2022-12-01

  Revised date: 2023-02-01

  Accepted date: 2023-03-07

  Online published: 2023-03-21

Supported by

National Natural Science Foundation of China(11972104);Shenzhen Stability Support Key Program in Colleges and Universities of China(GXWD20220817133329001)

摘要

星载天线反射器形面精度对其电磁性能影响至关重要,基于压电作动器的形面主动控制方法是保障反射器在轨服役期间形面精度的一个有效手段。本文考虑反射器结构在轨期间的材料属性时变不确定性,结合数字孪生技术提出了一种反射器形面鲁棒性主动控制方法。首先,将材料属性在概率-凸集模型(P-CS)下统一量化,并基于贝叶斯理论和位移监测实现数据驱动的模型动态更新;其次,以反射器结构面外位移鲁棒性作为结构形面精度不确定性评价指标,建立作动器电压布局优化模型,并用空间场函数描述电压布局形式,实现大规模离散设计变量的降维映射。该动态更新布局优化模型可分解为一系列序列子优化问题,基于代理模型优化算法进行求解。最后,将本文方法应用于六边形反射器形面主动控制问题中,分别讨论了施加不同种电压约束的情况,数值算例验证了本算法的有效性和适用性。

本文引用格式

何佳琦 , 吴伟达 , 罗阳军 . 基于P-CS模型与数字孪生的星载天线反射器形面鲁棒性控制方法[J]. 航空学报, 2023 , 44(19) : 328343 -328343 . DOI: 10.7527/S1000-6893.2023.28343

Abstract

The surface precision of the space-borne antenna reflector is the main influence factor of its electromagnetic performance. The active shape control methodology is an effective way to guarantee the surface precision of space-borne antenna reflectors in orbit. Considering the uncertain material properties of the space-borne antenna reflectors in orbit, a robust shape control method is proposed based on Probability-Convex Set (P-CS) model and digital twin in this paper. The uncertain material properties are quantified in a uniform model (P-CS model). The P-CS model can be updated based on the Bayesian theory and driven by displacement monitoring data. According to the P-CS model, a voltage layout optimization model is proposed to achieve the optimal robustness of the surface precision under uncertainties. To solve such voltage layout optimization problem with multiple local optimal solutions and large scale of discrete variables, the voltage layout is described by a bounded field with space correlation based on the continuous representation and dimensionality reduction method, and then the design space is discretized and sequential sub-optimization problems are formed. The optimal solution can be achieved by solving sub-optimization problems one by one. The proposed method is used to solve an active shape control problem for a regular hexagon space-borne antenna reflector. Two cases with the constraints of applying one kind of voltage and four kinds of voltage are analyzed to demonstrate the validity and applicability of the proposed method.

参考文献

1 宋祥帅, 谭述君, 高飞雄, 等. 星载天线反射器形面主动控制研究现状与展望[J]. 空间电子技术202219(1): 1-12.
  SONG X S, TAN S J, GAO F X, et al. Research progresses and prospect of active shape control for space-borne antenna reflectors[J]. Space Electronic Technology202219(1): 1-12 (in Chinese).
2 TANAKA H. Surface error estimation and correction of a space antenna based on antenna gainanalyses[J]. Acta Astronautica201168(7-8): 1062-1069.
3 SONG X S, TAN S J, WANG E M, et al. Active shape control of an antenna reflector using piezoelectric actuators[J]. Journal of Intelligent Material Systems and Structures201930(18-19): 2733-2747.
4 HAFTKA R T, ADELMAN H M. An analytical investigation of shape control of large space structures by applied temperatures[J]. AIAA Journal198523(3): 450-457.
5 SONG X S, CHU W M, TAN S J, et al. Adaptive shape control for antenna reflectors based on feedback error learning algorithm[J]. AIAA Journal202058(7): 3229-3240.
6 LU Y F, YUE H H, DENG Z Q, et al. Adaptive shape control for thermal deformation of membrane mirror with in-plane PVDF actuators[J]. Chinese Journal of Mechanical Engineering201831(1): 1-11.
7 XU X, LUO Y Z. Multi-objective shape control of prestressed structures with genetic algorithms[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering2008222(8): 1139-1147.
8 SHAO S B, SONG S Y, XU M L, et al. Mechanically reconfigurable reflector for future smart space antenna application[J]. Smart Materials and Structures201827(9): 095014.
9 HILL J, WANG K W, FANG H. Advances of surface control methodologies for flexible space reflectors[J]. Journal of Spacecraft and Rockets201350(4): 816-828.
10 WANG Z W, LI T J, CAO Y Y. Active shape adjustment of cable net structures with PZT actuators[J]. Aerospace Science and Technology201326(1): 160-168.
11 ZHANG S X, DU J L, DUAN B Y, et al. Integrated structural-electromagnetic shape control of cable mesh reflector antennas[J]. AIAA Journal201453(5): 1395-1399.
12 孟松鹤, 叶雨玫, 杨强, 等. 数字孪生及其在航空航天中的应用[J]. 航空学报202041(9): 023615.
  MENG S H, YE Y M, YANG Q, et al. Digital twin and its aerospace applications[J]. Acta Aeronautica et Astronautica Sinica202041(9): 023615 (in Chinese).
13 Cearley D W, Burke B, Searle S, et al. Top 10 strategic technology trends for 2018 [EB/OL]. (2017-10-03) [2023-03-21]. .
14 董雷霆, 周轩, 赵福斌, 等. 飞机结构数字孪生关键建模仿真技术[J]. 航空学报202142(3): 023981.
  DONG L T, ZHOU X, ZHAO F B, et al. Key technologies for modeling and simulation of airframe digital twin[J]. Acta Aeronautica et Astronautica Sinica202142(3): 023981 (in Chinese).
15 YU J S, SONG Y, TANG D Y, et al. A digital twin approach based on nonparametric Bayesian network for complex system health monitoring[J]. Journal of Manufacturing Systems202158: 293-304.
16 LI C Z, MAHADEVAN S, LING Y, et al. Dynamic Bayesian network for aircraft wing health monitoring digital twin[J]. AIAA Journal201755(3): 930-941.
17 ELISHAKOFF I. Essay on uncertainties in elastic and viscoelastic structures: From A. M. Freudenthal’s criticisms to modern convex modeling[J]. Computers & Structures199556(6): 871-895.
18 JIANG C, HAN X, LU G Y, et al. Correlation analysis of non-probabilistic convex model and corresponding structural reliability technique[J]. Computer Methods in Applied Mechanics and Engineering2011200(33-36): 2528-2546.
19 LIMBOURG P, DE ROCQUIGNY E. Uncertainty analysis using evidence theory - confronting level-1 and level-2 approaches with data availability and computational constraints[J]. Reliability Engineering & System Safety201095(5): 550-564.
20 FAES M G R, DAUB M, MARELLI S, et al. Engineering analysis with probability boxes: A review on computational methods[J]. Structural Safety202193: 102092.
21 董玉革, 陈心昭, 赵显德, 等. 基于模糊事件概率理论的模糊可靠性分析通用方法[J]. 计算力学学报200522(3): 281-286.
  DONG Y G, CHEN X Z, ZHAO X D, et al. A general approach for fuzzy reliability analysis based on the fuzzy probability theory[J]. Chinese Journal of Computational Mechanics200522(3): 281-286 (in Chinese).
22 LI J W, JIANG C. A novel imprecise stochastic process model for time-variant or dynamic uncertainty quantification[J]. Chinese Journal of Aeronautics202235(9): 255-267.
23 PING M H, HAN X, JIANG C, et al. A time-variant uncertainty propagation analysis method based on a new technique for simulating non-Gaussian stochastic processes[J]. Mechanical Systems and Signal Processing2021150: 107299.
24 WANG L, WANG X J, CHEN X, et al. Time-variant reliability model and its measure index of structures based on a non-probabilistic interval process[J]. Acta Mechanica2015226(10): 3221-3241.
25 MENG Z, GUO L B, HAO P, et al. On the use of probabilistic and non-probabilistic super parametric hybrid models for time-variant reliability analysis[J]. Computer Methods in Applied Mechanics and Engineering2021386: 114113.
26 BISSIRI P G, HOLMES C C, WALKER S G. A general framework for updating belief distributions[J]. Journal of the Royal Statistical Society Series B, Statistical Methodology, 201678(5): 1103-1130.
27 WANG R C. Analysis and improvement of combination rule in D-S theory[J]. Applied Mechanics and Materials2014556-562: 3930-3934.
28 PAN Y, ZHANG L M, LI Z W, et al. Improved fuzzy Bayesian network-based risk analysis with interval-valued fuzzy sets and D-S evidence theory[J]. IEEE Transactions on Fuzzy Systems202028(9): 2063-2077.
29 HE J Q, LUO Y J. A Bayesian updating method for non-probabilistic reliability assessment of structures with performance test data[J]. Computer Modeling in Engineering & Sciences2020125(2): 777-800.
30 何佳琦, 贾晓璇, 吴伟达, 等. P-CS不确定性量化模型与其性能数据驱动更新方法[J]. 力学学报202254(10): 2808-2824.
  HE J Q, JIA X X, WU W D, et al. P-CS uncertainty quantification model and its performance data-driven updating method[J]. Chinese Journal of Theoretical and Applied Mechanics202254(10): 2808-2824 (in Chinese).
31 SILVA G A DA, CARDOSO E L, BECK A T. Comparison of robust, reliability-based and non-probabilistic topology optimization under uncertain loads and stress constraints[J]. Probabilistic Engineering Mechanics202059: 103039.
32 KANNO Y. On three concepts in robust design optimization: absolute robustness, relative robustness, and less variance[J]. Structural and Multidisciplinary Optimization202062(2): 979-1000.
33 CHENG J, LIU Z Y, QIAN Y M, et al. Non-probabilistic robust equilibrium optimization of complex uncertain structures[J]. Journal of Mechanical Design2020142(2): 021405.
34 RIBEIRO L H M S, POGGETTO V F DAL, ARRUDA J R F. Robust optimization of attenuation bands of three-dimensional periodic frame structures[J]. Acta Mechanica2022233(2): 455-475.
35 ZHAN J J, LUO Y J. Robust topology optimization of hinge-free compliant mechanisms with material uncertainties based on a non-probabilistic field model[J]. Frontiers of Mechanical Engineering201914(2): 201-212.
36 KANG Z, WU C L, LUO Y J, et al. Robust topology optimization of multi-material structures considering uncertain graded interface[J]. Composite Structures2019208: 395-406.
37 ZHANG S X, DUAN B Y. Integrated structural-electromagnetic optimization of cable mesh reflectors considering pattern degradation for random structural errors[J]. Structural and Multidisciplinary Optimization202061(4): 1621-1635.
38 YUE X W, WEN Y C, HUNT J H, et al. Surrogate model-based control considering uncertainties for composite fuselage assembly[J]. Journal of Manufacturing Science and Engineering2018140(4): 041017.
39 LUO Y Q, WANG Z D, WEI G L, et al. Fuzzy-logic-based control, filtering, and fault detection for networked systems: A survey[J]. Mathematical Problems in Engineering20152015: 1-11.
40 FENG Z Y, SHE J H, XU L. A brief review and insights into matrix inequalities for H static-output-feedback control and a local optimal solution[J]. International Journal of Systems Science201950(12): 2292-2305.
41 WANG L, XIONG C, WANG X J, et al. Hybrid time-variant reliability estimation for active control structures under aleatory and epistemic uncertainties[J]. Journal of Sound and Vibration2018419: 469-492.
42 ZHU L P, ELISHAKOFF I, STARNES J H. Derivation of multi-dimensional ellipsoidal convex model for experimental data[J]. Mathematical and Computer Modelling199624(2): 103-114.
43 LI Y L, WANG X J, WANG C, et al. Non-probabilistic Bayesian update method for model validation[J]. Applied Mathematical Modelling201858: 388-403.
44 SUN Y, ZHOU Y, KE Z, et al. Stiffener layout optimization framework by isogeometric analysis-based stiffness spreading method[J]. Computer Methods in Applied Mechanics and Engineering2022390: 114348.
45 HAO P, LIU D C, ZHANG K P, et al. Intelligent layout design of curvilinearly stiffened panels via deep learning-based method[J]. Materials & Design2021197: 109180.
46 FERRARI F, SIGMUND O. Revisiting topology optimization with buckling constraints[J]. Structural and Multidisciplinary Optimization201959(5): 1401-1415.
47 LUO Y J, ZHAN J J. Linear buckling topology optimization of reinforced thin-walled structures considering uncertain geometrical imperfections[J]. Structural and Multidisciplinary Optimization202062(6): 3367-3382.
48 LUO Y J, BAO J W. A material-field series-expansion method for topology optimization of continuum structures[J]. Computers & Structures2019225: 106122.
49 LI C C, DER KIUREGHIAN A. Optimal discretization of random fields[J]. Journal of Engineering Mechanics1993119(6): 1136-1154.
50 ROSENBLATT M. Remarks on a multivariate transformation[J]. The Annals of Mathematical Statistics195223(3): 470-472.
51 JONES D R, SCHONLAU M, WELCH W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization199813(4): 455-492.
52 Joseph VR, Hung Y. Orthogonal-maximin Latin hypercube designs[J]. Statistica Sinica200818(1): 171-186.
53 SVANBERG K. The method of moving asymptotes—a new method for structural optimization[J]. International Journal for Numerical Methods in Engineering198724(2): 359-373.
54 STEEVES J, PELLEGRINO S. Ultra-thin highly deformable composite mirrors: AIAA-2013-1523[R]. Reston: AIAA, 2013.
55 LAN L, JIANG S D, ZHOU Y, et al. An experimental study on reflector wave-front error correction using PZT actuators[C]∥ SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring. San Francisco: SPIE, 2016: 86-100.
文章导航

/