电弧风洞NO平面激光诱导荧光可视化方法与试验验证
收稿日期: 2022-12-12
修回日期: 2023-02-03
录用日期: 2023-03-03
网络出版日期: 2023-03-17
基金资助
国家自然科学基金(62175053┫; 黑龙江省自然科学基金┣LH2021F028┫; 哈尔滨工业大学科研创新基金┣HIT.NSRIF202245)
Research and experimental verification of NO-PLIF visualization method in arc-heated wind tunnel
Received date: 2022-12-12
Revised date: 2023-02-03
Accepted date: 2023-03-03
Online published: 2023-03-17
Supported by
National Natural Science Foundation of China(62175053);Heilongjiang Provincial Natural Science Foundation of China(LH2021F028);Scientific Research Innovation Foundation in Harbin Institute of Technology(HIT.NSRIF202245)
高焓气流平面激光诱导荧光(PLIF)可视化是近年来发展起来的一种高效的电弧风洞流场诊断方法,但由于大功率电弧风洞测量环境较为恶劣,相关研究工作开展难度大。面向解决低密度宽温度范围激发、远距离探测和背景辐射强等电弧风洞高焓流场测量难题,以NO作为示踪粒子,优化选择了适合宽温度范围的激发波长,设计了根据试验模型需求可变攻角与高度的片光整形系统,并采用大通量、高增益探测系统,在大功率电弧风洞上开展了NO-PLIF可视化试验,获得了自由流和平板模型边界层不同攻角、不同壁面高度的NO-PLIF图像,为飞行器热防护研究提供基础数据支撑。
关键词: 高焓气流; 电弧风洞; 平面激光诱导荧光技术(PLIF); 一氧化氮(NO); 飞行器热防护
袁勋 , 于欣 , 彭江波 , 曾徽 , 欧东斌 . 电弧风洞NO平面激光诱导荧光可视化方法与试验验证[J]. 航空学报, 2023 , 44(19) : 128391 -128391 . DOI: 10.7527/S1000-6893.2023.28391
Planar Laser-Induced Fluorescence (PLIF) visualization of high enthalpy flow, which is developed in recent years, is an efficient method for diagnosing the flow field in the arc-heated wind tunnel. However, due to the hostile measurement environment in the high-power arc-heated wind tunnel, it is difficult to carry out the related research. To address the difficulties of high enthalpy flow measurement in the arc-heated wind tunnel with low density and wide temperature range excitation, long distance detection and strong background radiation, we chose Nitric Oxide (NO) as the tracer particle, selected the excitation wavelength suitable for a wide temperature range through optimization, and designed a laser sheet shaping system with variable attack angles and heights according to the requirements of the test model. Moreover, a large flux and high gain detection system is utilized to carry out NO-PLIF visualization experiments in the high-power arc-heated wind tunnel. We obtained the NO-PLIF images of free-flow, and the NO-PLIF images of shock layers in flat plate models with different attack angles and wall surface heights, which provides basic data support for thermal protection research of aircraft.
1 | 曾徽, 陈智铭, 闫宪翔, 等. 电弧加热器铜污染组分效应发射光谱定量研究[J]. 航空学报, 2020, 41(4): 123521. |
ZENG H, CHEN Z M, YAN X X, et al. Quantitative study on emission spectrum of copper pollution component effect in arc heater[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 123521 (in Chinese). | |
2 | 杨卫丽, 廖孟豪, 方勇. 美俄高超声速导弹发展取得突破性进展[J]. 战术导弹技术, 2019(1): 15-18, 32. |
YANG W L, LIAO M H, FANG Y. Breakthrough progress has been made in the development of hypersonic missiles in the United States and Russia[J]. Tactical Missile Technology, 2019(1): 15-18, 32 (in Chinese). | |
3 | 刘丽萍, 王国林, 王一光, 等. 高焓化学非平衡流条件下防热材料表面催化特性的试验方法[J]. 航空学报, 2017, 38(10): 121317. |
LIU L P, WANG G L, WANG Y G, et al. Test method for surface catalytic characteristics of thermal protection materials under high enthalpy chemical non-equilibrium flow conditions[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10): 121317 (in Chinese). | |
4 | 曾庆轩. 硅基材料表面与氧原子相互作用的光谱诊断与模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2020: 1-4. |
ZENG Q X. Spectroscopic diagnosis and simulation of the interaction between silicon-based materials and oxygen atoms[D]. Harbin: Harbin Institute of Technology, 2020: 1-4 (in Chinese). | |
5 | 刘丽萍, 王一光, 王国林, 等. 大气压条件下高焓空气等离子体流场特性及应用[J]. 航空学报, 2018, 39(8): 122132. |
LIU L P, WANG Y G, WANG G L, et al. Characteristics and application of high enthalpy air plasma flow field under atmospheric pressure[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8): 122132 (in Chinese). | |
6 | 陈卫, 伍越, 黄祯君, 等. 基于TDLAS的电弧风洞流场Cu组分监测[J]. 航空学报, 2019, 40(8): 122841. |
CHEN W, WU Y, HUANG Z J, et al. Monitoring of Cu composition in flow field of arc wind tunnel based on TDLAS[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 122841 (in Chinese). | |
7 | CHAZOT O, PANERAI F. High-enthalpy facilities and plasma wind tunnels for aerothermodynamics ground testing[M]∥Hypersonic Nonequilibrium Flows: Fundamentals and Recent Advances. Reston: AIAA, 2015: 329-342. |
8 | YAN H, ZHANG S H, WANG F Y, et al. High-enthalpy flow investigations by UV laser-induced fluorescence[C]∥2019 PhotonIcs & Electromagnetics Research Symposium-Spring (PIERS-Spring). Piscataway: IEEE Press, 2020: 4242-4247. |
9 | TAKAYANAGI H, SHUN K, SAKAI T, et al. Translational temperature distribution measurements in high enthalpy flows by Laser-Induced Fluorescence[C]∥51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013: 741. |
10 | RAO X, MATVEEV I B, LEE T H. Nitric oxide formation in a premixed flame with high-level plasma energy coupling[J]. IEEE Transactions on Plasma Science, 2009, 37(12): 2303-2313. |
11 | SCHMIDT J B, JIANG N, GANGULY B N. Nitric oxide PLIF measurement in a point-to-plane pulsed discharge in vitiated air of a propane/air flame[J]. Plasma Sources Science and Technology, 2014, 23(6): 065005. |
12 | TAKAYANAGI H, MIZUNO M, FUJII K, et al. Arc wind tunnel flow characterization measured by laser-induced fluorescence of atomic species[C]∥41st AIAA Thermophysics Conference. Reston: AIAA, 2009. |
13 | MIZUNO M, ITO T, ISHIDA K, et al. Laser induced fluorescence of nitric oxide and atomic oxygen in an arc heated wind tunnel[C]∥39th AIAA Thermophysics Conference. Reston: AIAA, 2007. |
14 | TAKAYANAGI H, MIZUNO M, FUJII K, et al. Arc heated wind tunnel flow diagnostics using laser-induced fluorescence of atomic species[C]∥47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009. |
15 | KIRSCHNER M, GARCIA-GARRIDO J, SANDER T, et al. Temperature measurements in an arc-heated plasma wind tunnel by laser-induced fluorescence[J]. Journal of Thermophysics and Heat Transfer, 2015, 30(1): 42-53. |
16 | INMAN J A, BATHEL B F, JOHANSEN C T, et al. Nitric-oxide planar laser-induced fluorescence measurements in the hypersonic materials environmental test system[J]. AIAA Journal, 2013, 51(10): 2365-2379. |
17 | MCDOUGALL C C, JOHANSEN C T, HERRMANN-STANZEL R, et al. Nitric oxide laser-induced fluorescence rotational thermometry in a hypersonic non-equilibrium flow[C]∥AIAA Scitech 2020 Forum. Reston: AIAA, 2020. |
18 | GRINSTEAD J, PORTER B, CARBALLO E. Flow property measurements using laser-induced fluorescence in the NASA Ames interaction heating facility arc jet[C]∥49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011. |
19 | GRINSTEAD J H, WILDER M C, PORTER B, et al. Consolidated laser-induced fluorescence diagnostic systems for the NASA Ames arc jet facilities[C]∥32nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston: AIAA, 2016. |
20 | 严浩, 张少华, 王方仪, 等. NO激光诱导荧光对高焓气流温度的测量[J]. 气体物理, 2020, 5(2): 1-7. |
YAN H, ZHANG S H, WANG F Y, et al. Measurement of high enthalpy gas flow temperature by NO laser-induced fluorescence[J]. Physics of Gases, 2020, 5(2): 1-7 (in Chinese). | |
21 | 朱家健, 万明罡, 吴戈, 等. 激光诱导荧光技术燃烧诊断的研究进展[J]. 中国激光, 2021, 48(4): 78-110. |
ZHU J J, WAN M G, WU G, et al. Research progress of combustion diagnosis by laser-induced fluorescence technology[J]. Chinese Journal of Lasers, 2021, 48(4): 78-110 (in Chinese). | |
22 | 卢新培, 吴帆, 李嘉胤. 大气压非平衡等离子体诊断:激光诱导荧光[J]. 高电压技术, 2021, 47(5): 1831-1846. |
LU X P, WU F, LI J Y. Diagnosis of atmospheric pressure non-equilibrium plasma: Laser-induced fluorescence[J]. High Voltage Engineering, 2021, 47(5): 1831-1846 (in Chinese). | |
23 | 王宁. 定量测量OH基浓度的PLIF技术研究及应用[D]. 长沙: 国防科学技术大学, 2009: 10-18. |
WANG N. Research and application of PLIF technology for quantitative measurement of OH group concentration[D].Changsha: National University of Defense Technology, 2009: 10-18. (in Chinese) | |
24 | 周淼. 基于丙酮平面激光诱导荧光气流混合比测量研究[D]. 哈尔滨: 哈尔滨工业大学, 2015: 8-10. |
ZHOU M. Study on measurement of mixing ratio of plane laser-induced fluorescence gas flow based on acetone[D].Harbin: Harbin Institute of Technology, 2015: 8-10 (in Chinese). | |
25 | 常光. 用于气态流场浓度分布测量的平面激光诱导荧光技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2021: 2-5. |
CHANG G. Study on planar laser induced fluorescence technology for measuring concentration distribution of gas flow field[D].Harbin: Harbin Institute of Technology, 2021: 2-5 (in Chinese). | |
26 | 曾徽, 陈连忠, 林鑫, 等. 电弧加热器高温流场激光吸收光谱诊断[J]. 实验流体力学, 2017, 31(4): 28-33. |
ZENG H, CHEN L Z, LIN X, et al. Laser absorption spectrum diagnosis of high temperature flow field in arc heater[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 28-33 (in Chinese). | |
27 | 欧东斌, 陈连忠, 董永晖, 等. 电弧风洞中基于TDLAS的气体温度和氧原子浓度测试[J]. 实验流体力学, 2015, 29(3): 62-67. |
OU D B, CHEN L Z, DONG Y H, et al. Measurement of gas temperature and oxygen atom concentration based on TDLAS in arc wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(3): 62-67 (in Chinese). | |
28 | 盛洁. 预混火焰中一氧化氮平面激光诱导荧光测量方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2015: 13-15. |
SHENG J. Study on measurement method of nitric oxide induced fluorescence by plane laser in premixed flame[D].Harbin: Harbin Institute of Technology, 2015: 13-15 (in Chinese). | |
29 | 袁勋, 于欣, 彭江波, 等. 超声速火焰的3DLIF可视化技术研究[J]. 实验流体力学, 2022, 36(4): 30-36. |
YUAN X, YU X, PENG J B, et al. Research on 3DLIF visualization technology of supersonic flame[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(4): 30-36 (in Chinese). |
/
〈 |
|
〉 |