专栏

面向无人机空中加油紧密编队的鲁棒控制方法

  • 张新昱 ,
  • 谢思宇 ,
  • 陶洋 ,
  • 李滚
展开
  • 1.电子科技大学 航空航天学院,成都  611731
    2.电子科技大学 计算机科学与工程学院,成都  611731
    3.中国空气动力研究与发展中心 高速空气动力研究所,绵阳  621000
.E-mail: syxie@uestc.edu.cn

收稿日期: 2022-12-23

  修回日期: 2023-02-13

  录用日期: 2023-03-10

  网络出版日期: 2023-03-10

基金资助

四川省自然科学基金(2023NSFSC1428)

A robust control method for close formation of aerial-refueling UAVs

  • Xinyu ZHANG ,
  • Siyu XIE ,
  • Yang TAO ,
  • Gun LI
Expand
  • 1.School of Aeronautics and Astronautics,University of Electronic Science and Technology of China,Chengdu  611731,China
    2.School of Computer Science and Engineering,University of Electronic Science and Technology of China,Chengdu  611731,China
    3.High Speed Aerodynamics Institute,China Aerodynamics Research and Development Center,Mianyang  621000,China
E-mail: syxie@uestc.edu.cn

Received date: 2022-12-23

  Revised date: 2023-02-13

  Accepted date: 2023-03-10

  Online published: 2023-03-10

Supported by

Natural Science Foundation of Sichuan Province(2023NSFSC1428)

摘要

针对无人机空中加油紧密编队系统鲁棒控制问题,提出了一种基于障碍函数的自适应干扰观测器的分布式鲁棒编队控制方法。对固定翼无人机外环动力学模型进行转换,构造了具有非匹配和匹配扰动的二阶多体系统简化模型,并基于障碍函数设计了相应通道的自适应干扰观测器;利用邻机状态信息定义了相应的一致误差函数,在此基础上,基于编队系统通信拓扑结构,引入干扰补偿机制,开发了空中加油无人机紧密编队系统分布式鲁棒控制器,以实现理想的异构无人机编队跟踪控制性能。基于Lyapunov稳定性理论,分析了闭环系统的稳定性和收敛性。最后,通过将所提方法应用在由不同型号的1架加油机和2架受油机构成的编队系统上,进行数值仿真验证。所得到仿真结果与理论分析一致,验证了设计的干扰观测器和控制器的有效性。

本文引用格式

张新昱 , 谢思宇 , 陶洋 , 李滚 . 面向无人机空中加油紧密编队的鲁棒控制方法[J]. 航空学报, 2023 , 44(20) : 628425 -628425 . DOI: 10.7527/S1000-6893.2023.28425

Abstract

This paper proposes a distributed robust formation control method based on adaptive disturbance observers with the barrier function for the robust control problem of aerial-refueling UAV close formation systems. A simplified model of the second-order multi-agent system with unmatched and matched disturbances is constructed by transforming the fixed-wing UAV outer-loop dynamics model, and the adaptive disturbance observer of the corresponding channel is designed based on the barrier function. The consensus error function is defined by using the neighboring aircraft state information, and on this basis, distributed robust controllers for aerial-refueling UAV close formation systems are developed to achieve the ideal heterogeneous UAV formation tracking control performance based on the communication topology of the formation system and the introduction of disturbance compensation mechanism. According to the Lyapunov stability theory, the stability and convergence of the closed-loop system are analyzed. Finally, the proposed scheme is verified by implementing into a formation system consisting of one refueling aircraft and two fuel-receiving aircraft of different types for numerical simulation. The simulation results are consistent with the theoretical analysis, which confirms the effectiveness of the designed disturbance observer and controller.

参考文献

1 陆宇平, 杨朝星, 刘洋洋. 空中加油系统的建模与控制技术综述[J]. 航空学报201435(9): 2375-2389.
  LU Y P, YANG C X, LIU Y Y. A survey of modeling and control technologies for aerial refueling system[J]. Acta Aeronautica et Astronautica Sinica201435(9): 2375-2389 (in Chinese).
2 VALASEK J, FAMULARO D, MARWAHA M. Fault-tolerant adaptive model inversion control for vision-based autonomous air refueling[J]. Journal of Guidance, Control, and Dynamics201740(6): 1336-1347.
3 吴慈航, 闫建国, 钱先云, 等. 受油机指定时间姿态稳定控制[J]. 航空学报202243(2): 324996.
  WU C H, YAN J G, QIAN X Y, et al. Predefined-time attitude stabilization control of receiver aircraft[J]. Acta Aeronautica et Astronautica Sinica202243(2): 324996 (in Chinese).
4 邹泉, 华艺欣, 邵翥, 等. 自主空中加油能力需求及关键评价指标分析[J/OL]. 系统仿真学报: 1-11.(2022-10-08)[2022-12-22]. .
  ZOU Q, HUA Y X, SHAO Z, et al. Analysis of Autonomous Aerial Refueling Capability Requirements and Key Evaluation Indicators[J]. Journal of System Simulation2022: 1-11. (2022-10-08)[2022-12-22]. (in Chinese).
5 KENT T E, RICHARDS A G. Analytic approach to optimal routing for commercial formation flight[J]. Journal of Guidance, Control, and Dynamics201538(10): 1872-1884.
6 全权, 魏子博, 高俊, 等. 软管式自主空中加油对接阶段中的建模与控制综述[J]. 航空学报201435(9): 2390-2410.
  QUAN Q, WEI Z B, GAO J, et al. A survey on modeling and control problems for probe and drogue autonomous aerial refueling at docking stage[J]. Acta Aeronautica et Astronautica Sinica201435(9): 2390-2410 (in Chinese).
7 徐博, 张大龙. 基于量子行为鸽群优化的无人机紧密编队控制[J]. 航空学报202041(8): 323722.
  XU B, ZHANG D L. Tight formation flight control of UAVs based on pigeon inspired algorithm optimization by quantum behavior[J]. Acta Aeronautica et Astronautica Sinica202041(8): 323722 (in Chinese).
8 ZHANG Q R, LIU H H T. Robust nonlinear close formation control of multiple fixed-wing aircraft[J]. Journal of Guidance, Control, and Dynamics202144(3): 572-586.
9 PACHTER M, D’AZZO J J, PROUD A W. Tight formation flight control[J]. Journal of Guidance, Control, and Dynamics200124(2): 246-254.
10 DOGAN A, VENKATARAMANAN S. Nonlinear control for reconfiguration of unmanned-aerial-vehicle formation[J]. Journal of Guidance, Control, and Dynamics200528(4): 667-678.
11 HANSON C E, PAHLE J, REYNOLDS J R, et al. Experimental measurements of fuel savings during aircraft wake surfing[C]∥ Proceedings of the 2018 Atmospheric Flight Mechanics Conference. Reston: AIAA, 2018.
12 PROUD A, PACHTER M, D'AZZO J. Close formation flight control[C]∥ Proceedings of the Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 1999.
13 SINGH S N, PACHTER M, CHANDLER P, et al. Input-output invertibility and sliding mode control for close formation flying of multiple UAVs[J]. International Journal of Robust and Nonlinear Control200010(10): 779-797.
14 GALZI D, SHTESSEL Y. Closed-coupled formation flight control using quasi-continuous high-order sliding-mode[C]∥ 2007 American Control Conference. Piscataway: IEEE Press, 2007: 1799-1804.
15 BINETTI P, ARIYUR K B, KRSTIC M, et al. Formation flight optimization using extremum seeking feedback[J]. Journal of Guidance, Control, and Dynamics200326(1): 132-142.
16 朱旭, 张逊逊, 尤谨语, 等. 基于信息一致性的无人机紧密编队集结控制[J]. 航空学报201536(12): 3919-3929.
  ZHU X, ZHANG X X, YOU J Y, et al. Swarm control of UAV close formation based on information consensus[J]. Acta Aeronautica et Astronautica Sinica201536(12): 3919-3929 (in Chinese).
17 BRODECKI M, SUBBARAO K. Autonomous formation flight control system using In-flight sweet-spot estimation[J]. Journal of Guidance, Control, and Dynamics201538(6): 1083-1096.
18 ZHANG Q R. Modeling, analysis, and control of close formation flight[D]. Toronto, Ontario, Canada: University of Toronto, 2019.
19 THOMAS P R, BULLOCK S, RICHARDSON T S, et al. Collaborative control in a flying-boom aerial refueling simulation[J]. Journal of Guidance, Control, and Dynamics201538(7): 1274-1289.
20 刘博 孟中杰. 软管连接约束下的加油机/无人机编队跟踪控制[J].航空学报2023. doi: 10.7527/S1000-6893.2022.28210 .
  LIU B, MENG Z. Tanker/UAV formation tracking control with hose connection constraints[J]. Acta Aeronautica et Astronautica Sinica2023. doi: 10.7527/S1000-6893.2022.28210 (in Chinese).
21 ZHANG X Y, LI H, LI G, et al. Barrier function based finite-time tracking control for a class of uncertain nonlinear systems with input saturation[J]. International Journal of Robust and Nonlinear Control202232(1): 83-100.
22 DU H B, CHEN M Z Q, WEN G H. Leader–following attitude consensus for spacecraft formation with rigid and flexible spacecraft[J]. Journal of Guidance, Control, and Dynamics201639(4): 944-951.
23 ZHU B, ZHANG Q R, LIU H H T. Design and experimental evaluation of robust motion synchronization control for multivehicle system without velocity measurements[J]. International Journal of Robust and Nonlinear Control201828(17): 5437-5463.
24 LIU S, XIE L H, LEWIS F L. Synchronization of multi-agent systems with delayed control input information from neighbors[J]. Automatica201147(10): 2152-2164.
25 MORELLI E A. Global nonlinear parametric modelling with application to F-16 aerodynamics[C]∥ Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207). Piscataway: IEEE Press, 2002: 997-1001.
26 KHALIL H K, GRIZZLE J W. Nonlinear systems[M]. 3rd. Upper Saddle River, NJ: Prentice Hall, 2002.
文章导航

/