固体力学与飞行器总体设计

轮盘低周疲劳模拟件设计及试验

  • 赵淼东 ,
  • 胡殿印 ,
  • 毛建兴 ,
  • 孙海鹤 ,
  • 秦仕勇 ,
  • 古远兴 ,
  • 王荣桥 ,
  • 田腾跃 ,
  • 鄢林 ,
  • 肖值兴
展开
  • 1.北京航空航天大学 能源与动力工程学院,北京  100191
    2.北京航空航天大学 航空发动机研究院,北京  100191
    3.北京航空航天大学 航空发动机结构强度北京市重点实验室,北京  100191
    4.中小型航空发动机联合研究中心,北京  100191
    5.中国航空发动机集团有限公司 四川燃气涡轮研究院,成都  610500
.E-mail: wangrq@buaa.edu.cn

收稿日期: 2022-11-28

  修回日期: 2022-12-13

  录用日期: 2023-02-24

  网络出版日期: 2023-03-10

基金资助

国家自然科学基金(52022007);国家科技重大专项(2017-IV-0004-0041)

Simulating specimen for low cycle fatigue of aero-engine disc: Design and experiment

  • Miaodong ZHAO ,
  • Dianyin HU ,
  • Jianxing MAO ,
  • Haihe SUN ,
  • Shiyong QIN ,
  • Yuanxing GU ,
  • Rongqiao WANG ,
  • Tengyue TIAN ,
  • Lin YAN ,
  • Zhixing XIAO
Expand
  • 1.School of Energy and Power Engineering,Beihang University,Beijing  100191,China
    2.Research Institute of Aero-Engine,Beihang University,Beijing  100191,China
    3.Beijing Key Laboratory of Aero-Engine Structure and Strength,Beihang University,Beijing  100191,China
    4.United Research Center of Mid-Small Aero-Engine,Beijing  100191,China
    5.Sichuan Gas Turbine Establishment,Aero Engine Corporation of China,Chengdu  610500,China
E-mail: wangrq@buaa.edu.cn

Received date: 2022-11-28

  Revised date: 2022-12-13

  Accepted date: 2023-02-24

  Online published: 2023-03-10

Supported by

National Natural Science Foundation of China(52022007);National Major Science and Technology Project in China(2017-IV-0004-0041)

摘要

航空发动机轮盘长时间在交变大载荷下工作,其盘心、螺栓孔、端齿等应力集中的特征部位容易发生低周疲劳失效。为准确评估轮盘特征部位的疲劳寿命,需设计反映应力梯度的模拟件并开展相应的疲劳试验,从而为发动机结构设计提供重要依据。现有的模拟件设计方法通常保证危险点一定范围内的应力/应变分布与真实构件的一致,但这些方法对“一定范围”的定义缺乏理论依据且未能形成统一认识。为此,提出了一种临界距离范围内SWT参量分布一致的模拟件设计方法,建立了轮盘盘心、螺栓孔、端齿等危险部位的模拟件设计方法,并开展了模拟件的低周疲劳试验。将端齿模拟件100%转速对应的平均疲劳寿命与轮盘旋转疲劳试验结果对比,相对误差为7%,且均为表面薄弱晶面起裂。最后,讨论了该模拟件设计方法的稳健性。

本文引用格式

赵淼东 , 胡殿印 , 毛建兴 , 孙海鹤 , 秦仕勇 , 古远兴 , 王荣桥 , 田腾跃 , 鄢林 , 肖值兴 . 轮盘低周疲劳模拟件设计及试验[J]. 航空学报, 2023 , 44(18) : 228320 -228320 . DOI: 10.7527/S1000-6893.2023.28320

Abstract

The discs in aero-engines are continuously subjected to large cyclic loading, of which the bores, bolt holes, curvic couplings and other feature areas are susceptible to Low Cycle Fatigue (LCF) failure. To accurately predict the fatigue life of the discs, it is necessary to design simulating specimens to reflect the stress gradient and perform fatigue experiments, which will provide an important basis for the design of the aero-engine structure. The existing simulating specimen design methods usually require that the stress and strain distribution within a certain range of the hotspot of simulating specimen should be consistent with those of the disc. However, the definition of "certain range" in these methods lacks theoretical basis and no uniform understanding has been reached. This study proposes a simulating specimen design method considering the consistency of SWT parameter distribution at the hotspots of simulating specimens and discs. The simulating specimens for the bores, bolt holes, curvic couplings of the disc are designed. A series of LCF experiments on simulating specimens are conducted. The average fatigue life of the curvic coupling simulating specimens corresponding to 100% rotational speed is compared with the results of the turbine disc rotational fatigue experiment, and the relative error is 7%, with both cracks initiating from the weak crystallographic facets on the surface. Finally, the robustness of the simulating specimen design method is discussed.

参考文献

1 王荣桥, 胡殿印. 发动机结构可靠性设计理论及应用[M]. 北京: 科学出版社, 2017.
  WANG R Q, HU D Y. Theory and application of engine structural reliability design[M]. Beijing: Science Press, 2017 (in Chinese).
2 LIU X, HU D Y, WANG R Q, et al. Calibration and validation of fatigue lifetime model in complex structures based on multi-level data[J]. International Journal of Fatigue2022159: 106783.
3 姚卫星. 结构疲劳寿命分析[M]. 北京: 国防工业出版社, 2003.
  YAO W X. Fatigue life prediction of structures[M]. Beijing: National Defense Industry Press, 2003 (in Chinese).
4 PUN A. Three methods of calculating total life, cracks initiation, and crack growth[J]. MSC/FATIGUE design news200156(24): 90-92.
5 TOPPER T H, WETZEL R M, MORROW J D. Neuber’s rule applied to fatigue of notched specimens[J]. Journal of Materials19674: 200-209.
6 DOWLING N, BROSE W R, WILSON W K. Notched member fatigue life prediction by the local strain approach[J]. Advances in Engineering19776: 55-84.
7 由美雁, 何雪浤, 谢里阳. 发动机轮盘模拟技术理论与方法[J]. 机械设计200724(2): 62-64.
  YOU M Y, HE X H, XIE L Y. Research on simulative technical theory and methodology of turbine rotor[J]. Journal of Machine Design200724(2): 62-64 (in Chinese).
8 魏大盛, 冯俊淇, 马梦弟, 等. 航空发动机轮盘中心孔模拟试验件设计方法及试验验证[J]. 航空动力学报202237(10): 2157-2166.
  WEI D S, FENG J Q, MA M D, et al. Design method and test verification of simulated specimen of aeroengine disc center hole[J]. Journal of Aerospace Power202237(10): 2157-2166 (in Chinese).
9 刘廷毅, 耿瑞, 张峻峰. 发动机轮盘低循环疲劳寿命试验模拟件设计[J]. 航空动力学报200823(1): 32-36.
  LIU T Y, GENG R, ZHANG J F. Design of simulated specimen for low-cycle fatigue of turbine engine disk[J]. Journal of Aerospace Power200823(1): 32-36 (in Chinese).
10 赵福星, 杨兴宇. 发动机构件低循环疲劳模拟试验件设计方法[J]. 燃气涡轮试验与研究200316(2): 50-52.
  ZHAO F X, YANG X Y. A design method of simulation samples for aero-engine components used in low cycle fatigue test[J]. Gas Turbine Experiment and Research200316(2): 50-52 (in Chinese).
11 LI Z L, XU H, SHI D Q, et al. Combined tensile and bending fatigue behavior and failure mechanism of a blade-like specimen at elevated temperature[J]. International Journal of Fatigue2022164: 107163.
12 况成玉, 刘奕斐. 某型航空发动机钛合金轮盘模拟疲劳试验件设计[J]. 装备制造技术2020(1):36-40.
  KUANG C Y, LIU Y F. Design of simulated specimen for low-cycle fatigue of aircraft engine titanium alloy disk[J]. Equipment Manufacturing Technology2020(1):36-40. (in Chinese).
13 艾兴, 米栋, 李坚, 等. 叶根倒角模拟件设计[J]. 航空发动机202147(2):58-62.
  AI X, MI D, LI J, et al. Design of blade root fillet specimen[J]. Aeroengine202147(2):58-62 (in Chinese).
14 TANAKA K. Engineering formulae for fatigue strength reduction due to crack-like notches[J]. International Journal of Fracture198322(2): 39-46.
15 SHEPPARD S D. Field effects in fatigue crack initiation: long life fatigue strength[J]. Journal of Mechanical Design1991113(2):188-194.
16 TAYLOR D. Geometrical effects in fatigue: a unifying theoretical model[J]. International Journal of Fatigue199921(5): 413-420.
17 张成成, 姚卫星. 典型缺口件疲劳寿命分析方法[J]. 航空动力学报201328(6): 1223-1230.
  ZHANG C C, YAO W X. Typical fatigue life analysis approaches for notched components[J]. Journal of Aerospace Power201328(6): 1223-1230 (in Chinese).
18 陆山, 王春光, 陈军. 任意最大应力梯度路径轮盘模拟件设计方法[J]. 航空动力学报201025(9): 2000-2005.
  LU S, WANG C G, CHEN J. Design method of imitation specimen for engine disk with any maximum stress gradient path[J]. Journal of Aerospace Power201025(9): 2000-2005 (in Chinese).
19 杨兴宇, 董立伟, 耿中行, 等. 某压气机轮盘榫槽低循环疲劳模拟件设计与试验[J]. 航空动力学报200823(10): 1829-1834.
  YANG X Y, DONG L W, GENG Z X, et al. Design and experimentation of simulation specimen for aero-engine compressor disk slot used in low cycle fatigue test[J]. Journal of Aerospace Power200823(10): 1829-1834 (in Chinese).
20 郑小梅, 孙燕涛, 杨兴宇, 等. 某涡扇发动机高压涡轮盘螺栓孔低循环疲劳模拟件设计[J]. 航空动力学报201833(10): 2351-2358.
  ZHENG X M, SUN Y T, YANG X Y, et al. Design of low cycle fatigue simulating specimen for bolt holes of a turbofan engine high pressure turbine disc[J]. Journal of Aerospace Power201833(10): 2351-2358 (in Chinese).
21 SU Y L, FAN Z L, WU W H, et al. Design method for the fatigue-simulating specimen of twin-web turbine disk[C]∥32nd International Council of the Aeronautical Sciences. Shanghai:[s.n.], 2021.
22 TAYLOR D. The theory of critical distances[J]. Engineering Fracture Mechanics200875(7):1696-1705.
23 SUSMEL L. The theory of critical distances: a review of its applications in fatigue[J]. Engineering Fracture Mechanics200875(7):1706-1724.
24 LIAO D, ZHU S P, QIAN G A. Multiaxial fatigue analysis of notched components using combined critical plane and critical distance approach[J]. International Journal of Mechanical Sciences2019160: 38-50.
25 WANG R Q, LIU H, HU D Y, et al. Evaluation of notch size effect on LCF life of TA19 specimens based on the stress gradient modified critical distance method[J]. Fatigue & Fracture of Engineering Materials & Structures201841(8):1794-1809.
26 BEREMIN F M, PINEAU A, MUDRY F, et al. A local criterion for cleavage fracture of a nuclear pressure vessel steel[J]. Metallurgical Transactions A198314(11): 2277-2287.
27 PLUVINAGE G. Fracture and fatigue emanating from stress concentrators[M]. Dordrecht: Kluwer Academic Publishers, 2003.
28 TAYLOR D, BOLOGNA P, KNANI K. Prediction of fatigue failure location on a component using a critical distance method[J]. International Journal of Fatigue200022(9):735-742.
29 SUSMEL L, TAYLOR D. The theory of critical distances to estimate lifetime of notched components subjected to variable amplitude uniaxial fatigue loading[J]. International Journal of Fatigue201133(7): 900-911.
30 SMITH K N, WATSON P, TOPPER T H. A stress-strain function for the fatigue of metals[J]. Journal of Materials19705(4): 767-778.
31 BABAEI S, GHASEMI-GHALEBAHMAN A. Damage-based modification for fatigue life prediction under non-proportional loadings[J]. International Journal of Fatigue201577:86-94.
32 XU S, ZHU S P, HAO Y Z, et al. A new critical plane-energy model for multiaxial fatigue life prediction of turbine disc alloys[J]. Engineering Failure Analysis201893: 55-63.
33 高仁衡, 曹廷云, 沈莲, 等. 高温度梯度轮盘低循环疲劳试验件设计方法[J]. 航空发动机202147(2): 74-78.
  GAO R H, CAO T Y, SHEN L,et al. Design method for low cycle fatigue test pieces of large temperature gradient turbine disk[J]. Aeroengine202147(2): 74-78 (in chinese).
文章导航

/