航空发动机整机振动辨识与抑制专栏

航空发动机整机振动问题研究方法及工程应用

  • 葛向东 ,
  • 吴法勇 ,
  • 刘永泉 ,
  • 安中彦 ,
  • 乔保栋 ,
  • 高强 ,
  • 秦天龙 ,
  • 周笑阳
展开
  • 中国航发 沈阳发动机研究所,沈阳  110015
.E-mail: Fayongwu@sina.com

收稿日期: 2022-12-05

  修回日期: 2023-02-13

  录用日期: 2023-02-21

  网络出版日期: 2023-03-03

基金资助

国防科技重点工程项目;基础性军工科研院所稳定支持项目

Research methods for whole aeroengine vibration and their engineering application

  • Xiangdong GE ,
  • Fayong WU ,
  • Yongquan LIU ,
  • Zhongyan AN ,
  • Baodong QIAO ,
  • Qiang GAO ,
  • Tianlong QIN ,
  • Xiaoyang ZHOU
Expand
  • AECC Shenyang Engine Research Institute,Shenyang 110015,China
E-mail: Fayongwu@sina.com

Received date: 2022-12-05

  Revised date: 2023-02-13

  Accepted date: 2023-02-21

  Online published: 2023-03-03

Supported by

Key Project of National Defense Science and Technology;Steady Fundamental Supporting Project for Scientific Research Institute of Military Industry

摘要

针对航空发动机整机振动特征溯源困难的现状,以某型发动机典型振动突变特征溯源研究为例,提出了一种基于整机及部件动力学试验手段的振动特征溯源研究方法。该方法首先通过整机及部件动力学试验测试手段揭示发动机动力学特性和典型现象深层特征,然后通过综合剖析方法溯源振动特征的动力学原因及结构原因。通过发动机全静子机匣支承动刚度和整机模态特性试验研究,获取了静子支承动刚度特性与整机模态特性。通过发动机转子全转速下动特性与转子模态试验研究,揭示了转子在离心载荷作用下的不平衡激励和弹性线变化规律,以及转子连接界面在不同力学参数下的模态特性。通过整机工作条件下的转子轴承座全息测振和基于发动机叶尖间隙的转子全息测振试验研究,揭示了发动机典型振动特征的瞬变特征、支点工作振型、转子涡动及初相点等特征的变化规律。经综合研判,得到了该发动机振动突变特征的原因是转子连接界面变化所引发的转子不平衡激励状态突变的结论。基于该机理开展了转子本机平衡技术研究,有效地抑制了多台发动机的振动突变特征,进一步表明该溯源方法的正确性。

本文引用格式

葛向东 , 吴法勇 , 刘永泉 , 安中彦 , 乔保栋 , 高强 , 秦天龙 , 周笑阳 . 航空发动机整机振动问题研究方法及工程应用[J]. 航空学报, 2024 , 45(4) : 628353 -628353 . DOI: 10.7527/S1000-6893.2023.28353

Abstract

To address the difficulty in feature traceability of whole aeroengine vibration, this paper proposes a research method for vibration feature traceability based on dynamic experiments of whole aeroengines and parts, with the study of typical vibration mutation feature traceability of an aeroengine as an example. This method firstly reveals the dynamic properties of the engine and deep features of typical phenomena by dynamic experiments of the whole aeroengine and parts, and then traces to the dynamic and structural causes of vibration features through comprehensive analysis. Properties of supporting dynamic stiffness of the stator and modal characteristics of the whole aeroengine are obtained by experimental study on supporting dynamic stiffness of the whole stator casing and modal characteristics of the whole aeroengine. The experimental study on the dynamic properties and modality of full speed rotors reveals the imbalance excitation and elastic line changing rule of rotors with centrifugal load, and the modal properties of the rotor joint interface with different mechanical parameters. Holographic vibration measurement of the rotor bearing block under working conditions of the whole aeroengine and that of the rotor based on the blade tip interval of the engine show the changing rule of the transient characteristics of the classical vibration feature, support point vibration modal, vortex motion of the rotor and primary phase spots. As found from comprehensive study and judgment, the vibration mutation characteristic of the aeroengine results from the rotor imbalance excitation status mutation caused by the change in the joint interface of the rotor. The study on the rotor balance technique based on this mechanism is conducted and the result shows that the vibration mutation properties of multiple aeroengines are effectively suppressed, further proving the correctness of this tracing method.

参考文献

1 刘永泉, 王德友, 洪杰, 等. 航空发动机整机振动控制技术分析[J]. 航空发动机201339(5): 1-8, 13.
  LIU Y Q, WANG D Y, HONG J, et al. Analysis of whole aeroengine vibration control technology[J]. Aeroengine201339(5): 1-8, 13 (in Chinese).
2 闻邦椿, 顾家柳, 夏松波, 等. 高等转子动力学: 理论、技术与应用[M]. 北京: 机械工业出版社, 2000: 77-82.
  WEN B C, GU J L, XIA S B, et al. Advanced rotor dynamics: Theory, technology and application[M]. Beijing: China Machine Press, 2000: 77-82 (in Chinese).
3 《航空发动机设计手册》总编委会. 航空发动机设计手册 第19册 转子动力学与整机振动[M]. 北京:航空工业出版社, 2000.
  The Editorial Board of Design Manual of Aero-engines. Design manual of aero-engines Vol.19, Rotor dynamics and engine vibration [M]. Beijing: Aviation Industry Press, 2000 (in Chinese).
4 葛向东, 高强, 路阳, 等. 风扇转子动特性试验与分析[J]. 航空发动机202046(2): 66-70.
  GE X D, GAO Q, LU Y, et al. Test and analysis of dynamic characteristic of fan rotor[J]. Aeroengine202046(2): 66-70 (in Chinese).
5 林京, 张博瑶, 张大义, 等. 航空燃气涡轮发动机故障诊断研究现状与展望[J]. 航空学报202243(8): 626565.
  LIN J, ZHANG B Y, ZHANG D Y, et al. Research status and prospect of fault diagnosis for gas turbine aeroengine[J]. Acta Aeronautica et Astronautica Sinica202243(8): 626565 (in Chinese).
6 ZHU J, GU P. Dynamic response of orthotropic plate using BEM with approximate fundamental solution[J]. Journal of Sound and Vibration1991151(2): 203-211.
7 ZIELINSKI M, ZILLER G. Noncontact blade vibration and tip clearance measurement system for aero engine application[C]∥ISABE, 2007.
8 赵罡, 李瑾岳, 徐茂程, 等. 航空发动机关键装配技术综述与展望[J]. 航空学报202243(10): 527484.
  ZHAO G, LI J Y, XU M C, et al. Research status and prospect of key aero-engine assembly technology[J]. Acta Aeronautica et Astronautica Sinica202243(10): 527484 (in Chinese).
9 SWEENEY S K. Lateral vibration prediction of drivelines having a flexible coupling[C]∥SAE Technical Paper Series. Warrendale: SAE International, 2011.
10 邓旺群, 唐广, 舒斯荣, 等. 对转发动机模拟低压转子高速动平衡试验研究[J]. 燃气涡轮试验与研究201023(4): 5-9.
  DENG W Q, TANG G, SHU S R, et al. High speed dynamic balance experiment research on an simulated low pressure rotor of a counter-rotating engine[J]. Gas Turbine Experiment and Research201023(4): 5-9 (in Chinese).
11 陈果, 贺志远, 尉询楷, 等. 基于整机的中介轴承外圈剥落故障振动分析[J]. 航空动力学报202035(3): 658-672.
  CHEN G, HE Z Y, YU X K, et al. Vibration analysis of peeling fault of intermediate bearing outer ring based on whole aero-engine[J]. Journal of Aerospace Power202035(3): 658-672 (in Chinese).
12 YU M Y, FANG M H, GE X D, et al. Feature extraction of mixed faults of intershaft bearing based on homologous information and Hjorth parameters[J]. Measurement2022196: 111253.
13 XU Y G, DENG Y J, ZHAO J Y, et al. A novel rolling bearing fault diagnosis method based on empirical wavelet transform and spectral trend[J]. IEEE Transactions on Instrumentation and Measurement202069(6): 2891-2904.
14 陈果, 杨默晗, 于平超. 基于深度学习的航空发动机不平衡故障部位识别[J]. 航空动力学报202035(12): 2602-2615.
  CHEN G, YANG M H, YU P C. Aero-engine unbalanced fault location identification method based on deep learning[J]. Journal of Aerospace Power202035(12): 2602-2615 (in Chinese).
15 LI J M, YAO X F, WANG H, et al. Periodic impulses extraction based on improved adaptive VMD and sparse code shrinkage denoising and its application in rotating machinery fault diagnosis[J]. Mechanical Systems and Signal Processing2019126: 568-589.
16 王奉涛, 刘晓飞, 敦泊森, 等. 基于萤火虫优化的核自动编码器在中介轴承故障诊断中的应用[J]. 机械工程学报201955(7): 58-64.
  WANG F T, LIU X F, DUN B S, et al. Application of kernel auto-encoder based on firefly optimization in intershaft bearing fault diagnosis[J]. Journal of Mechanical Engineering201955(7): 58-64 (in Chinese).
17 LAHA S K. Enhancement of fault diagnosis of rolling element bearing using maximum kurtosis fast nonlocal means denoising[J]. Measurement2017100: 157-163.
18 CHAKRABORTY M, MITRA D. Epilepsy seizure detection using kurtosis based VMD’s parameters selection and bandwidth features[J]. Biomedical Signal Processing and Control202164: 102255.
19 ZHANG X, ZHANG Z Q, WANG J X, et al. Reweighted-Kurtogram with sub-bands rearranged and ensemble dual-tree complex wavelet packet transform for bearing fault diagnosis[J]. Structural Health Monitoring202221(6): 2951-2967.
20 任兴民, 顾家柳. 航空发动机安装节动柔度测量及静子动力特性计算[J]. 力学与实践199315(6): 26-28, 48.
  REN X M, GU J L. Measurement of dynamic flexibility of aero-engine installation joint and calculation of dynamic characteristics of stator[J]. Mechanics and Engineering199315(6): 26-28, 48 (in Chinese).
21 廖明夫.转子动力学基础[M]. 西安:西北工业大学出版社, 2000.
  LIAO M F. Fundamentals of rotor dynamics[M]. Xi’an:Northwestern Polytechnical University Press, 2000 (in Chinese).
22 闻邦椿, 刘树英,张纯宇. 机械振动学[M]. 北京: 冶金工业出版社, 2000.
  WEN B C, LIU S Y, ZHANG C Y. Mechanical vibration[M]. Beijing: Metallurgical Industry Press, 2000 (in Chinese).
23 杨建刚. 旋转机械振动分析与工程应用[M]. 北京: 中国电力出版社, 2007: 37-43.
  YANG J G. Vibration analysis and engineering application of rotating machinery[M]. Beijing: China Electric Power Press, 2007: 37-43 (in Chinese).
24 洪杰, 王华, 肖大为, 等. 转子支承动刚度对转子动力特性的影响分析[J]. 航空发动机200834(1): 23-27.
  HONG J, WANG H, XIAO D W, et al. Effects of dynamic stiffness of rotor bearing on rotordynamic characteristics[J]. Aeroengine200834(1): 23-27 (in Chinese).
25 杨丰宇. 虑及多转速的柔性转子动平衡优化配平方法研究[D]. 北京: 北京化工大学, 2020.
  YANG F Y. Study on balancing optimization method of flexible rotor considering multiple speeds[D]. Beijing: Beijing University of Chemical Technology, 2020 (in Chinese).
文章导航

/