基于多要素改进NSGA-Ⅱ的小直径制导炸弹空面打击最优火力分配方法
收稿日期: 2022-10-14
修回日期: 2022-11-16
录用日期: 2023-02-21
网络出版日期: 2023-03-03
基金资助
国家自然科学基金(61903305);中央高校基本科研业务费专项资金(HXGJXM202214)
Optimal fire distribution method of small diameter guided bomb in air-to-surface strike based on multi-factor modified NSGA-Ⅱ
Received date: 2022-10-14
Revised date: 2022-11-16
Accepted date: 2023-02-21
Online published: 2023-03-03
Supported by
National Natural Science Foundation of China(61903305);Fundamental Research Funds for the Central Universities(HXGJXM202214)
为了最大化提升小直径制导炸弹对面积目标的打击效率,提出基于多要素改进的非支配排序遗传算法的小直径制导炸弹空面打击最优火力分配方法。考虑制导炸弹的误差散布,运用网格法建立了单枚制导炸弹的打击效率评定模型,从而在此基础上建立了多枚制导炸弹的最优火力分配模型;构建了打击效率最大和用弹量最小的优化目标函数,建立了制导炸弹的最优火力分配模型。通过引入概率选择算子、混合交叉算子、改进精英保留策略对NSGA-Ⅱ算法中的多要素进行改进,增强算法的全局搜索能力,提升算法性能。仿真结果表明,MFM-NSGA-Ⅱ算法能够获得有效的小直径制导炸弹最优火力分配方案,最优火力分配结果对应的用弹量随场景参数的变化而改变,并且本文方法求解质量优于原NSGA-II算法和多目标粒子群算法。
毕文豪 , 周久力 , 段晓波 , 张安 , 徐双飞 . 基于多要素改进NSGA-Ⅱ的小直径制导炸弹空面打击最优火力分配方法[J]. 航空学报, 2023 , 44(17) : 328116 -328116 . DOI: 10.7527/S1000-6893.2023.28116
To maximize their strike efficiency against area targets, this paper proposes an optimal firepower allocation method for small diameter guided bombs in air-to-surface strike based on Multi-Factors Modified Non-Dominated Sorting Genetic Algorithm-II (MFM-NSGA-II). Considering the error dispersion of the guided bomb, an evaluation model of the strike efficiency of a single guided bomb is established by using the grid method. On this basis, the optimal fire distribution model of multiple guided bombs is established. The optimization objective function for the maximum strike efficiency and the minimum amount of ammunition is constructed, and the optimal fire distribution model of the guided bomb is established. By introducing the probability selection operator, hybrid crossover operator and improved elite retention strategy, the multi-factors in Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) are improved to enhance the global search ability of the algorithm and improve the performance of the algorithm. The simulation results show that the MFM-NSGA-II can obtain an effective optimal firepower allocation scheme for small diameter guided bombs. The amount of ammunition corresponding to the optimal firepower allocation result changes with the change of scene parameters, and the solution quality of the proposed method is better than that of the original NSGA-II and multi-objective particle swarm optimization.
1 | 李臣明, 宦超, 石怀龙. 某箱式火箭炮对面目标分布式杀伤最优火力分配[J]. 兵工学报, 2017, 38(9): 1699-1704. |
LI C M, HUAN C, SHI H L. Optimal fire distribution of a rocket launcher against area target[J]. Acta Armamentarii, 2017, 38(9): 1699-1704 (in Chinese). | |
2 | 李彩峰, 徐锋, 张玉梅, 等. 基于遗传算法的火箭弹对面目标的弹着点分配方案[J]. 火力与指挥控制, 2020, 45(3): 86-89, 94. |
LI C F, XU F, ZHANG Y M, et al. Missile assignment for flat target based on genetic algorithm[J]. Fire Control & Command Control, 2020, 45(3): 86-89, 94 (in Chinese). | |
3 | 汪民乐, 房茂燕. 导弹对面积目标射击效能的智能优化算法[J]. 弹道学报, 2014, 26(1): 45-49. |
WANG M L, FANG M Y. Intelligence optimization algorithm for attacking efficiency of missile attacking surface target[J]. Journal of Ballistics, 2014, 26(1): 45-49 (in Chinese). | |
4 | CHANG T Q, KONG D P, HAO N, et al. Solving the dynamic weapon target assignment problem by an improved artificial bee colony algorithm with heuristic factor initialization[J]. Applied Soft Computing, 2018, 70: 845-863. |
5 | 夏维, 刘新学, 范阳涛, 等. 基于改进型多目标粒子群优化算法的武器-目标分配[J]. 兵工学报, 2016, 37(11): 2085-2093. |
XIA W, LIU X X, FAN Y T, et al. Weapon-target assignment with an improved multi-objective particle swarm optimization algorithm[J]. Acta Armamentarii, 2016, 37(11): 2085-2093 (in Chinese). | |
6 | LEE Z J, LEE C Y, SU S F. An immunity-based ant colony optimization algorithm for solving weapon–target assignment problem[J]. Applied Soft Computing, 2002, 2: 39-47 |
7 | 肖中晖, 寇英信, 李战武, 等. 火力分配多目标优化的IBACO算法[J]. 火力与指挥控制, 2017, 42(7): 165-169. |
XIAO Z H, KOU Y X, LI Z W, et al. Indicator based ant colony optimization for multi-objective WTA problem[J]. Fire Control & Command Control, 2017, 42(7): 165-169 (in Chinese). | |
8 | 冯超, 景小宁, 何贵波. 基于改进SPEA2算法的火力分配问题[J]. 计算机工程与应用, 2016, 52(13): 248-253. |
FENG C, JING X N, HE G B. Weapon-target assignment based on improved SPEA2 algorithm[J]. Computer Engineering and Applications, 2016, 52(13): 248-253 (in Chinese). | |
9 | 邵诗佳. 基于智能算法的武器目标分配问题研究[D]. 哈尔滨: 哈尔滨工程大学, 2019: 17-39. |
SHAO S J. Research on weapon target assignment based on intelligent algorithm[D]. Harbin: Harbin Engineering University, 2019: 17-39 (in Chinese). | |
10 | 聂俊峰, 陈行军, 苏琦. 基于NSGA-Ⅲ算法的集群目标来袭火力分配建模与优化[J]. 兵工学报, 2021, 42(8): 1771-1779. |
NIE J F, CHEN X J, SU Q. Modeling and optimization of weapon-target assignment for group targets defense based on NSGA-Ⅲ algorithm[J]. Acta Armamentarii, 2021, 42(8): 1771-1779 (in Chinese). | |
11 | 于博文, 吕明. 基于改进NSGA-Ⅲ算法的动态武器协同火力分配方法[J]. 火力与指挥控制, 2021, 46(8): 71-77, 82. |
YU B W, LYU M. Method for dynamic weapon coordinative firepower distribution based on improved NSGA-Ⅲ algorithm[J]. Fire Control & Command Control, 2021, 46(8): 71-77, 82 (in Chinese). | |
12 | DEB K, AGRAWAL S, PRATAP A, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. |
13 | 陈思, 胡涛. 基于多目标优化遗传算法的武器-目标分配[J]. 舰船电子工程, 2015, 35(7): 54-57, 100. |
CHEN S, HU T. Weapon-target assignment with multi-objective non-dominated set ranking genetic algorithm[J]. Ship Electronic Engineering, 2015, 35(7): 54-57, 100 (in Chinese). | |
14 | 郭景录, 付平. 基于NSGA-Ⅱ的WTA多目标优化[J]. 火力与指挥控制, 2010, 35(3): 130-134. |
GUO J L, FU P. Multi-objective optimization of weapon-target assignment (WTA) using NSGA-Ⅱ[J]. Fire Control & Command Control, 2010, 35(3): 130-134 (in Chinese). | |
15 | CHAN T S F, JHA A, TIWARI K M. Bi-objective optimization of three echelon supply chain involving truck selection and loading using NSGA-Ⅱ with heuristics algorithm[J]. Applied Soft Computing, 2016, 38: 978-987. |
16 | WU Z Q, KWONG C K, AYDIN R, et al. A cooperative negotiation embedded NSGA-Ⅱ for solving an integrated product family and supply chain design problem with remanufacturing consideration[J]. Applied Soft Computing, 2017, 57: 19-34. |
17 | SHABANI-NAEENI F, YAGHIN R G. Integrating data visibility decision in a multi-objective procurement transport planning under risk: a modified NSGA-Ⅱ[J]. Applied Soft Computing, 2021, 107: 107406. |
18 | PAL P, TRIPATHI S, KUMAR C. Bandwidth estimation in high mobility scenarios of MANET using NSGA-Ⅱ optimized fuzzy inference system[J]. Applied Soft Computing, 2022, 123: 108936. |
19 | MONIZ D, PEDRO J, HORTA N, et al. Multi-objective framework for cost-effective OTN switch placement using NSGA-II with embedded domain knowledge[J]. Applied Soft Computing, 2019, 83: 105608. |
20 | LIU W D, ZHU H, WANG Y P, et al. Topology optimization of support structure of telescope skin based on bit-matrix representation NSGA-Ⅱ[J]. Chinese Journal of Aeronautics, 2013, 26(6): 1422-1429. |
21 | ZHAO K, GAO Z H, HUANG J T, et al. Aerodynamic optimization of rotor airfoil based on multi-layer hierarchical constraint method[J]. Chinese Journal of Aeronautics, 2016, 29(6): 1541-1552. |
22 | ZHANG X J, GUAN X M, ZHU Y B, et al. Strategic flight assignment approach based on multi-objective parallel evolution algorithm with dynamic migration interval[J]. Chinese Journal of Aeronautics, 2015, 28(2): 556-563. |
23 | 张敏, 罗文坚, 王煦法. 一种基于正态分布交叉的ε-MOEA[J]. 软件学报, 2009, 20(2): 305-314. |
ZHANG M, LUO W J, WANG X F. A normal distribution crossover for ε-MOEA[J]. Journal of Software, 2009, 20(2): 305-314 (in Chinese). | |
24 | 田旭杨, 陈泽君. 基于改进NSGA-Ⅱ的列车运行多目标优化方法[J]. 计算机应用, 2021, 41(S1): 153-161. |
TIAN X Y, CHEN Z J. Multi-objective optimization method of train operation based on improved NSGA-Ⅱ[J]. Journal of Computer Applications, 2021, 41(S1): 153-161 (in Chinese). | |
25 | LI H F, WANG B Y, YUAN Y, et al. Scoring and dynamic hierarchy-based NSGA-Ⅱ for multiobjective workflow scheduling in the cloud[J]. IEEE Transactions on Automation Science and Engineering, 2022, 19(2): 982-993. |
26 | 张茂清, 李东洋, 胡博, 等. 基于维度扰动的快速非支配排序遗传算法Ⅱ[J]. 郑州大学学报(工学版), 2020, 41(1): 38-43. |
ZHANG M Q, LI D Y, HU B, et al. Non-dominated sorting genetic algorithm II based on dimensionality perturbation[J]. Journal of Zhengzhou University (Engineering Science), 2020, 41(1): 38-43 (in Chinese). | |
27 | GU X W, WANG X H, LIU Z B, et al. A multi-objective optimization model using improved NSGA-Ⅱ for optimizing metal mines production process[J]. IEEE Access, 2020, 8: 28847-28858. |
28 | ZHAO Z B, LIU B, ZHANG C R, et al. An improved adaptive NSGA-Ⅱ with multi-population algorithm[J]. Applied Intelligence, 2019, 49: 569-580. |
29 | ZHU Y C, ZHOU L, XU H S. Application of improved genetic algorithm in ultrasonic location of transformer partial discharge[J]. Neural Computing and Applications, 2020, 32: 1755-1764. |
30 | ZHANG M Q, WANG L, CUI Z H, et al. Fast nondominated sorting genetic algorithm II with Lévy distribution for network topology optimization[J]. Mathematical Problems in Engineering, 2020(1): 3094941. |
31 | 艾邦成, 宋威, 董垒, 等. 内埋武器机弹分离相容性研究进展综述[J]. 航空学报, 2020, 41(10): 023809. |
AI B C, SONG W, DONG L, et al. Review of aircraft-store separation compatibility of internal weapons[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 023809 (in Chinese). | |
32 | 宋威, 艾邦成. 内埋武器机弹分离相容性及流动控制试验研究[J]. 空气动力学学报, 2022, 40(3): 203-211. |
SONG W, AI B C. Experimental investigation on aircraft-store compatibility and flow control for internal weapons separation[J]. Acta Aerodynamica Sinica, 2022, 40(3): 203-211 (in Chinese). |
/
〈 |
|
〉 |