电子电气工程与控制

一种基于时空等级的LEO卫星网络路由策略

  • 魏德宾 ,
  • 操昱 ,
  • 杨力 ,
  • 潘成胜
展开
  • 1.南京理工大学 自动化学院,南京 210094
    2.大连大学 信息工程学院,大连 116000
.E-mail: weidebin@163.com

收稿日期: 2022-09-13

  修回日期: 2022-11-23

  录用日期: 2023-02-10

  网络出版日期: 2023-03-03

基金资助

国家自然科学基金(U21B2003)

A routing strategy for LEO satellite network based on space⁃time⁃level

  • Debin WEI ,
  • Yu CAO ,
  • Li YANG ,
  • Chengsheng PAN
Expand
  • 1.School of Automation,Nanjing University of Science & Technology,Nanjing 210094,China
    2.School of Information Engineering,Dalian University,Dalian 116000,China
E-mail: weidebin@163.com

Received date: 2022-09-13

  Revised date: 2022-11-23

  Accepted date: 2023-02-10

  Online published: 2023-03-03

Supported by

National Natural Science Foundation of China(U21B2003)

摘要

随着5G技术的发展和6G技术的研究,低轨卫星网络在未来空天地一体化网络中的地位越发重要,而作为网络核心技术的路由策略仍面临一些挑战,如卫星网络拓扑高动态变化、链路频繁切换、节点计算处理能力有限以及负载流量分布不均衡等。针对卫星所覆盖区域负载不均衡且与时间因素有关,以及星上用户多业务服务质量需求的问题,设计了一种基于时空等级的业务分类负载均衡路由算法。算法考虑了卫星网络流量的分布与时空等级的关系。卫星节点需先根据当前时刻及其所覆盖的地面区域计算其时空等级,并在路由算法的下一跳实时调整阶段加入时空等级作为选路条件之一,同时改进了阈值的计算方式,并在路由时考虑了不同的链路代价以满足多业务服务质量需求。仿真结果表明,相较于DSP、TLR和RMLBR算法,所提算法虽然在总吞吐量表现不及TLR和RMLBR算法,但在时延以及链路利用率方面有所改进,有效降低了平均端到端时延,较好地满足不同业务服务质量需求,均衡网络负载。

本文引用格式

魏德宾 , 操昱 , 杨力 , 潘成胜 . 一种基于时空等级的LEO卫星网络路由策略[J]. 航空学报, 2023 , 44(16) : 327994 -327994 . DOI: 10.7527/S1000-6893.2023.27994

Abstract

With the development of 5G technology and the research of 6G technology, the LEO satellite network will play an increasingly important role in the future integrated air-space-ground network. However, the routing strategy as the core technology of the network still faces some challenges, such as high dynamic changes in satellite network topology, frequent switching of paths, limited computing and processing capacity of nodes, and unbalanced load and traffic distribution. Aiming at the problem of unbalanced load in the area covered by the satellite and related to time factors, and the multi-service QoS requirements of users on the satellite, this paper designs a space-time-level-based service classification load balancing routing algorithm. The algorithm considers the relationship between the distribution of satellite network traffic and the space-time level. The satellite node needs to solve its space-time level according to the current moment and the ground area it covers. In the next hop real-time adjustment stage of the routing algorithm, the space-time level is added as one of the routing conditions. At the same time, the calculation method of the threshold is improved, and different link weights are considered when routing to meet the multi-service QoS requirements. The simulation results show that, compared with the DSP algorithm, the TLR algorithm and RMLBR algorithm, although the algorithm in this paper is not as good as the TLR and RMLBR algorithm in terms of total throughput, the delay and ISL utilization have been improved, which effectively reduces the average end-to-end delay, better meets the QoS requirements of different services, and balances the network load.

参考文献

1 陈全, 杨磊, 郭剑鸣, 等. 低轨巨型星座网络:组网技术与研究现状[J]. 通信学报202243(5): 177-189.
  CHEN Q, YANG L, GUO J M, et al. LEO mega- constellation network :technologies and state of the art[J]. Journal on Communications202243(5): 177- 189 (in Chinese).
2 SU Y T, LIU Y Q, ZHOU Y Q, et al. Broadband LEO satellite communications: architectures and key technologies[J]. IEEE Wireless Communications201926(2): 55-61.
3 潘成胜,行贵轩,戚耀文,等. 多状态空间信息网络拓扑生成优化算法[J]. 航空学报202041(4):323546.
  PAN C S, XING G X, QI Y W, et al. Topology generation and optimization method in multi-state space information network[J]. Acta Aeronautica et Sinica202041(4):323546 (in Chinese).
4 WERNER M. A dynamic routing concept for ATM-based satellite personal communication networks[J]. IEEE Journal on Selected Areas in Communications199715(8): 1636-1648.
5 CHANG H S, KIM B W, LEE C G, et al. Topological design and routing for low-earth orbit satellite networks[C].∥Proceedings of GLOBECOM ’95. Singapore: IEEE, 1995: 529-535.
6 CHANG H S, KIM B W, LEE C G, et al. FSA-based link assignment and routing in low-earth orbit satellite networks[J]. IEEE Transactions on Vehicular Technology199847(3): 1037-1048.
7 EKICI E, AKYILDIZ I F, BENDER M D, et al. A distributed routing algorithm for datagram traffic in LEO satellite networks[J]. IEEE/ACM Transactions on Networking20019(2): 137-147.
8 AKYILDIZ I F, EKICI E, BENDER M D, et al. MLSR: A novel routing algorithm for multilayered satellite IP networks[J]. IEEE/ACM Transactions on Networking200210(3): 411-424.
9 CHEN J, JAMALIPOUR A. An adaptive path routing scheme for satellite IP networks[J]. International Journal of Communication Systems200316(1): 5-21.
10 TALEB T, MASHIMO D, JAMALIPOUR A, et al. Explicit load balancing technique for NGEO satellite IP networks with on-board processing capabilities[J]. IEEE/ACM Transactions on Networking200917(1): 281-293.
11 KORCAK ?, ALAGOZ F, JAMALIPOUR A, et al. Priority-based sdaptive shortest path routing in NGEO satellite networks[J]. International Journal of Communication Systems200720(3): 313-333.
12 FISCHER D, BASIN D, ECKSTEIN K, et al. Predictable mobile routing for spacecraft networks[J]. IEEE Transactions on Mobile Computing20136(6): 1174-1187.
13 CONG L G, YANG H M, WANG Y H, et al. A multi-objective routing algorithm based on auction game for space information network[J]. Tehni?ki Vjesnik202027(3): 697-702.
14 LIU Z G, ZHU J, ZHANG J M, et al. Routing algorithm design of satellite network architecture based on SDN and ICN[J]. International Journal of Satellite Communications and Networking202038(1): 1-15.
15 邢川, 陈二虎, 韩笑冬. 基于动静结合方法的卫星网络路由方法研究[J]. 空间控制技术与应用202046(3): 55-59.
  XING C, CHEN E H, HAN X D, et al. Static-dynamic routing algorithm in satellite constellation network[J]. Aerospace control and application202046(3): 55- 59 (in Chinese).
16 梁超,杨力,潘成胜,等. 卫星网络动态资源图多QoS约束路由算法[J]. 航空学报202243(9): 326422.
  LIANG C, YANG L, PAN C S, et al. Multi-QoS constrains routing algorithm based on satellite network dynamic resource graph[J]. Acta Aeronautica et Astronautica Sinica202243(9): 326422 (in Chinese).
17 ZHOU Y, XIE Z C, et al. Inter-satellite load balancing routing algorithm for LEO satellite constellation based on regional-traffic-detour[J]. Journal of University of Chinese Academy of Sciences202138(5): 687-695.
18 SONG G H, CHAO M Y, YANG B W, et al. TLR:A Traffic-Light-based intelligent routing strategy for NGEO satellite IP networks[J]. IEEE Transactions on Wireless Communications201413(6): 3380-3393.
19 柏倩. 基于不确定理论的卫星网络负载均衡路由策略研究[D]. 南京: 南京邮电大学, 2020: 27-33.
  BAI Q. Research on load balancing routing strategy based on uncertainty theory in satellite network[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2020: 27-33 (in Chinese).
20 NA Z Y, PAN Z, LIU X, et al. Distributed routing strategy based on machine learning for LEO satellite network[J]. Wireless Communications and Mobile Computing2018(3-4): 1-10.
21 BAI J J, LU X C, LU Z X, et al. Compact explicit multi-path routing for LEO satellite networks[C]∥2005 Workshop on High Performance Switching and Routing. Piscataway: IEEE Press, 2005: 386-390.
22 饶元,王汝传,林萍. ns2中的基于移动Agent卫星网路由算法仿真[J]. 东南大学学报(自然科学版)2008(S1): 21-24.
  RAO Y, WANG C R, LIN P, et al. Satellite network routing algorithm based on mobile agent simulated in ns2[J]. Journal of Southeast University (Natural Science Edition)2008(S1): 21-24 (in Chinese).
23 饶元. 基于代理的LEO卫星网动态路由技术研究[D]. 南京: 南京邮电大学, 2011: 34-37.
  RAO Y. Research on agent-based low earth orbit satellite network dynamic routing[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2011: 34- 37 (in Chinese).
文章导航

/