复杂低空无人机飞行冲突网络建模与精细管理
收稿日期: 2022-11-04
修回日期: 2022-12-29
录用日期: 2023-02-16
网络出版日期: 2023-02-24
基金资助
国家自然科学基金项目(52002178);江苏省自然科学基金项目(BK20222013)
Network modeling and refined management of UAV flight conflicts in complex low altitude airspace
Received date: 2022-11-04
Revised date: 2022-12-29
Accepted date: 2023-02-16
Online published: 2023-02-24
Supported by
National Natural Science Foundation of China(52002178);Natural Science Foundation of Jiangsu Province(BK20222013)
针对未来无人机(UAV)规模化应用和密集化飞行带来的安全问题,面向多元化空域、高密度流量和高动态演化交织形成的复杂低空系统,研究了复杂低空无人机飞行冲突网络建模与精细管理问题。首先,采用Gilbert-Johnson-Keerthi(GJK)算法,构建了基于冲突连边动态识别的无人机飞行冲突网络模型,以平均冲突数量、平均运行风险和平均聚集系数等指标表征了无人机飞行冲突网络特征参数;然后,基于空间栅格编码理论,提出了低空空域系统栅格剖分和编码设计方法,建立了离散空域环境基于数字栅格的无人机飞行冲突探测算法,实现了无人机飞行冲突的精细探测;最后,以无人机冲突数量最少和运行成本最低为优化目标,构建了考虑优先级的无人机冲突解脱多目标混合整数优化模型,设计了基于非支配排序遗传算法(NSGA-Ⅱ)算法的无人机冲突解脱智能算法,实现了多任务场景和不同优先级下无人机飞行冲突的最优解脱。仿真实验表明,与传统的基于三维坐标的冲突探测方法相比,提出的基于数字栅格的冲突探测方法可将探测总时间降低78.4%,并可将多机型混杂场景下的无人机冲突探测效率由“指数增长级”降至“线性增长级”;以平均冲突风险等级作为解脱优先级原则时,无人机冲突解脱模型可得到性能更优的非支配解,与不考虑优先级相比,可将平均每架无人机高度层、水平航迹和速度的调整值分别减少32.8%、21.4%和14.6%。经验证,本文提出的无人机飞行冲突精细管理方法是有效的,可为低空空域安全管理与无人机风险防控提供理论支撑和方法指导。
谢华 , 苏方正 , 尹嘉男 , 韩斯特 , 张新珏 . 复杂低空无人机飞行冲突网络建模与精细管理[J]. 航空学报, 2023 , 44(18) : 328226 -328226 . DOI: 10.7527/S1000-6893.2023.28226
The large-scale application and intensive flight of Unmanned Aerial Vehicle (UAV) in the future bring about safety problems. In view of the complex low-altitude system formed by the interweaving of diversified airspace, high-density traffic and high dynamic evolution, the problem of network modeling and refined management of complex low-altitude UAV flight conflicts is studied. Firstly, the Gilbert-Johnson-Keerthi (GJK) algorithm is used to construct a UAV flight conflict network model based on the dynamic identification of conflicting edges, and the characteristic parameters of the UAV flight conflict network are characterized by the average number of conflicts, the average operation risk and the average clustering coefficient. Then, based on the spatial raster coding theory, a raster segmentation and coding design method for low-altitude airspace system is proposed, and a digital raster-based UAV flight conflict detection algorithm for discrete airspace environment is established. Finally, a multi-objective mixed integer optimization model for UAV conflict resolution considering priority is constructed with the optimization objectives of the minimum number of UAV conflicts and the lowest operation cost. Moreover, an intelligent UAV conflict resolution algorithm based on Non-Dominated Sorting Genetic Algorithm-Ⅱ(NSGA-Ⅱ) algorithm is designed to realize the optimal resolution of UAV flight conflicts under multi-task scenarios and different priorities. The optimal resolution of UAV flight conflicts under multi-mission scenarios and different priorities is then achieved. Simulation experiments show that compared with the traditional 3D coordinate-based conflict detection method, the proposed digital raster-based conflict detection method can reduce the total detection time by 78.4%, and reduce the UAV conflict detection efficiency from “exponential growth level” to “linear growth level” in multi-model hybrid scenarios. When the average conflict risk level is used as the deconfliction priority principle, the UAV conflict deconfliction model can obtain non-dominated solutions with better performance and reduce the average adjustment values of altitude layer, horizontal trajectory and speed per UAV by 32.8%, 21.4% and 14.6% compared with the principle without considering the priority. It is verified that the fine management method of UAV flight conflict proposed in this paper is effective and can provide theoretical support and methodological guidance for the safety management of low-altitude airspace and UAV risk prevention and control.
1 | XU C C, LIAO X H, TAN J M, et al. Recent research progress of unmanned aerial vehicle regulation policies and technologies in urban low altitude[J]. IEEE Access, 2020, 8: 74175-74194. |
2 | PATCHOU M, SLIWA B, WIETFELD C. Flying robots for safe and efficient parcel delivery within the COVID-19 pandemic[C]∥2021 IEEE International Systems Conference (SysCon). Piscataway: IEEE Press, 2021: 1-7. |
3 | 揭东, 汤新民, 李博, 等. 无人机冲突探测及解脱策略关键技术研究[J]. 武汉理工大学学报(交通科学与工程版), 2018, 42(5): 776-782. |
JIE D, TANG X M, LI B, et al. Research on key technologies of UAV conflict detection and resolution strategy[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2018, 42(5):776-782 (in Chinese). | |
4 | WEINERT A, CAMPBELL S, VELA A, et al. Well-clear recommendation for small unmanned aircraft systems based on unmitigated collision risk[J]. Journal of Air Transportation, 2018, 26(3): 113-122. |
5 | MULLINS M, HOLMAN M, FOERSTER K, et al. Dynamic separation thresholds for a small air-borne sense and avoid system: AIAA-2013-5148 [R]. Boston: AIAA, 2013. |
6 | 张阳, 程先峰, 刘岩. 空中交通基于四维轨迹运行概念及其应用[J]. 指挥信息系统与技术, 2020, 11(5): 5-10. |
ZHANG Y, CHENG X F, LIU Y. Operational concept and application of four-dimensional trajectory based operation in air traffic[J]. Command Information System and Technology, 2020, 11(5): 5-10 (in Chinese). | |
7 | 武晓光, 张军峰, 郑乐. 相关航空器的冲突探测与调度研究[J]. 武汉理工大学学报(交通科学与工程版), 2015, 39(1): 166-170. |
WU X G, ZHANG J F, ZHENG Y. Research of conflict detection and scheduling for related aircraft[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2015, 39(1):166-170 (in Chinese). | |
8 | PONGSAKORNSATHIEN N, BIJJAHALLI S, GARDI A, et al. A performance-based airspace model for unmanned aircraft systems traffic management[J]. Aerospace, 2020, 7(11): 154. |
9 | ZHAI W X, TONG X C, MIAO S X, et al. Collision detection for UAVs based on GeoSOT-3D grids[J]. ISPRS International Journal of Geo-Information, 2019, 8(7): 299. |
10 | 顾俊伟. 基于多源数据融合的4D航迹规划技术研究[D]. 南京: 南京航空航天大学,2016: 34-50. |
GU J W. Research on 4D route planning technology based on multi-source data fusion[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016: 34-50 (in Chinese). | |
11 | 谢华,苏方正,尹嘉男,等.低空无人机飞行冲突分类探测与差异解脱方法研究[J/OL].安全与环境学报, (2022-08-16)[2022-11-04]. . |
XIE H, SU F Z, YIN J N, et al. Research on classified detection and differential resolution method for UAV flight conflicts in low altitude airspace [J/OL]. Journal of Safety and Environment, (2022-08-16)[2022-11-04]. (in Chinese). | |
12 | 付其喜, 梁晓龙, 张佳强, 等. 双层优化的多无人机合作式冲突探测与解脱[J]. 哈尔滨工业大学学报, 2020, 52(4): 74-83. |
FU Q X, LIANG X L, ZHANG J Q, et al. Cooperative conflict detection and resolution for multiple UAVs using two-layer optimization[J]. Journal of Harbin Institute of Technology, 2020, 52(4): 74-83 (in Chinese). | |
13 | VIRáGH C, NAGY M, GERSHENSON C, et al. Self-organized UAV traffic in realistic environments[C]∥ 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). New York: ACM, 2016: 1645-1652. |
14 | INNOCENTI M, GELOSI P, POLLINI L. Air traffic management using probability function fields:AIAA-1999-4149[R]. Reston: AIAA, 1999. |
15 | ALONSO-AYUSO A, ESCUDERO L F, MARTíN-CAMPO F J. An exact multi-objective mixed integer nonlinear optimization approach for aircraft conflict resolution[J]. TOP, 2016, 24(2): 381-408. |
16 | TANG X M, JI X Q, LI T. Key technology in muti?UAV conflict detection and resolution strategy [J]. Transactions of Nanjing University of Aeronautics and Astronautics,2020,37(2): 175?186. |
17 | CECEN R K, SARA? T, CETEK C. Meta-heuristic algorithm for aircraft pre-tactical conflict resolution with altitude and heading angle change maneuvers[J]. TOP, 2021, 29(3): 629-647. |
18 | PANG B Z, LOW K H, LV C. Adaptive conflict resolution for multi-UAV 4D routes optimization using stochastic fractal search algorithm[J]. Transportation Research Part C: Emerging Technologies, 2022, 139: 103666. |
19 | 张宏宏, 甘旭升, 辛建霖, 等. 基于合作博弈的多机冲突解脱算法[J]. 北京航空航天大学学报, 2022, 48(5):863-871. |
ZHANG H H, GAN X S, XIN J L, et al. Multi-aircraft conflict resolution algorithm based on cooperative game[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 863-871 (in Chinese). | |
20 | 管祥民, 吕人力. 基于满意博弈论的复杂低空飞行冲突解脱方法[J]. 航空学报, 2017, 38(S1): 721475. |
GUAN X M, LYU R L. Aircraft conflict resolution method based on satisfying game theory[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(S1): 721475 (in Chinese). | |
21 | VAN DEN BERGEN G. A fast and robust GJK implementation for collision detection of convex objects[J]. Journal of Graphics Tools, 1999, 4(2): 7-25. |
22 | BERNABEU E J. Continuous distance computation for motions with constant accelerations[C]∥2010 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2010: 4028-4034. |
23 | MATHEWS J H. Numerical methods for computer science, engineering, and mathematics[M]. Englewood Cliffs: Prentice-Hall, 1987: 103-121. |
24 | REICH P G. Analysis of long-range air traffic systems: Separation standards-Ⅲ[J]. Journal of Navigation, 1966, 19(3): 331-347. |
25 | 黄洋, 汤俊, 老松杨. 基于复杂网络的无人机飞行冲突解脱算法[J]. 航空学报, 2018, 39(12): 322222. |
HUANG Y, TANG J, LAO S Y. UAV flight conflict resolution algorithm based on complex network[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 322222 (in Chinese). | |
26 | 朱永文, 蒲钒. 空域空间网格标识原理及应用[J]. 北京航空航天大学学报, 2021, 47(12): 2462-2474. |
ZHU Y W, PU F. Principle and application of airspace spatial grid identification[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2462-2474 (in Chinese). |
/
〈 |
|
〉 |