[1]李天梅 司小胜 张建勋.多源传感监测线性退化设备数模联动的剩余寿命预测方法[J]. 航空学报, doi: 10.7527/S1000-6893.2022.27190.
[2]LI Tianmei Xiao-Sheng Si Zhang Jianxun.Data-Model Interactive Remaining Useful Life Prediction Method for Multi-Sensor Monitored Linear Stochastic Degrading Devices[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, doi: 10.7527/S1000-6893.2022.27190.
[3]陆宁云, 陈闯, 姜斌, 邢尹.复杂系统维护策略最新研究进展:从视情维护到预测性维护[J].自动化学报, 2021, 47(01):1-17
[4]Lu Ning-Yun, Chen Chuang, Jiang Bin, Xing Yin.Latest progress on maintenance strategy of complex system: from condition-based maintenance to predictive maintenance[J].Acta Automatica Sinica, 2021, 47(1):1-
[5]曹明, 王鹏, 左洪福, 曾海军, 孙见忠, 杨卫东, 魏芳, 陈雪峰.民用航空发动机故障诊断与健康管理现状、挑战与机遇Ⅱ: 地面综合诊断、寿命管理和智能维护维修决策[J].航空学报, 2022, 43(9):625574-625574
[6]CAO Ming, WANG Peng, ZUO Hongfu, ZENG Haijun, SUN Jianzhong, YANG Weidong, WEI Fang, CHEN Xuefeng.Current status,challenges and opportunities of civil aero-engine diagnostics & health management Ⅱ: Comprehensive off-board diagnosis,life management and intelligent condition based MRO[J].ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9):625574-625574
[7]Peng Y, Liu D, Peng X.A review:Prognostics and health management[J].Journal of Electronic Measurement and Instrument, 2010, 24(1):1-9
[8]Dawid A P.Statistical theory: the prequential approach (with discussion)[J].Journal of Royal Statistical Society: Series A, 1984, 147(2):278-292
[9]Jardine AKS, Lin D, Banjevic D.A review on machinery diagnostics and prognostics implementing condition-based maintenance[J].Mechanical Systems and Signal Processing, 2006, 20(7):1483-1510
[10]Fan J J, Yung K C, Pecht M.Physics-of-Failure-Based Prognostics and Health Management for High-Power White Light-Emitting Diode Lighting[J].IEEE Transactions on Device and Materials Reliability, 2011, 11(3):407-416
[11]Si X S, Wang W B, Hu C H, et al.Remaining useful life estimation-A review on the statistical data driven approaches[J].European Journal of Operational Research, 2011, 213(1):1-14
[12]裴洪, 胡昌华, 司小胜, 张建勋, 庞哲楠, 张鹏.基于机器学习的设备剩余寿命预测方法综述[J].机械工程学报, 2019, 55(08):1-13
[13]PEI Hong, HU Changhua, SI Xiaosheng, ZHANG Jianxun, PANG Zhenan, ZHANG Peng.Review of Machine Learning Based Remaining Useful Life Prediction Methods for Equipment[J].Journal of Mechanical Engineering, 2019, 55(8):1-13
[14]赵志宏, 张然, 孙诗胜.基于关系网络的轴承剩余使用寿命预测方法[J].自动化学报, 2022, 45(x):1-
[15]Zhao Zhi-Hong, Zhang Ran, Sun Shi-Sheng.Bearing remaining useful life prediction based on relation network[J].Acta Automatica Sinica, 2022, 45(x):1-
[16]X.Li, Y. X. Xu, N. P. Li, B. Yang, and Y. G. Lei, “Remaining useful life prediction with partial sensor malfunctions using deep adversarial networks, ” IEEE/CAA J. Autom. Sinica.
[17]R.B. Jin, M. Wu, K. Y. Wu, K. Z. Gao, Z. H. Chen, and X. L. Li, “Position encoding based convolutional neural networks for machine remaining useful life prediction, ” IEEE/CAA J. Autom. Sinica, vol. 9, no. 8, pp. 1427–1439, Aug. 2022.
[18]张晟斐, 李天梅, 胡昌华, 杜党波, 司小胜.基于深度卷积生成对抗网络的缺失数据生成方法及其在剩余寿命预测中的应用[J].航空学报, 2022, 43(8):225708-225708
[19]ZHANG Shengfei, LI Tianmei, HU Changhua, DU Dangbo, SI Xiaosheng.Missing data generation method and its application in remaining useful life prediction based on deep convolutional generative adversarial network[J].ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8):225708-225708
[20]刘学娟.基于随机系数回归模型的退化过程及维修策略[J].控制与决策, 2021, 36(03):754-760
[21]Liu Xue-juan.Degradation process and maintenance planning based on random coefficient regression model[J].Journal of Control and Decision. 2021, 36(03):75 4-760 (in Chinese).
[22]王玺, 胡昌华, 任子强, 熊薇.基于非线性过程的航空发动机性能衰减建模与剩余寿命预测[J].航空学报, 2020, 41(2):223291-223291
[23]WANG Xi, HU Changhua, REN Ziqiang, XIONG Wei.Performance degradation modeling and remaining useful life prediction for aero-engine based on nonlinear Wiener process[J].ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(2):223291-223291
[24]Giorgio M, Mele A, Pulcini G.A perturbed gamma degradation process with degradation dependent non‐Gaussian measurement errors[J].Applied Stochastic Models in Business and Industry, 2018, 35(2):198-210
[25]Chen X, Sun X, Si X, et al.Remaining Useful Life Prediction Based on an Adaptive Inverse Gaussian Degradation Process with Measurement Errors[J].IEEE Access, 2019, PP(99):1-1
[26]Li T, Pei H, Pang Z, et al.A Sequential Bayesian Updated Wiener Process Model for Remaining Useful Life Prediction[J].IEEE Access, 2019, PP(99):1-1
[27]V.R. Joseph, I.T. Yu. Reliability improvement experiments with degradation data. IEEE Transactions on Reliability, 55(1):149-157, 2006.
[28]Si X, Ren Z, Hu X, et al.A Novel Degradation Modeling and Prognostic Framework for Closed-Loop Systems With Degrading Actuator[J].IEEE Transactions on Industrial El- ectronics, 2020, 67(11):9635-9647
[29]Zhang Z, Hu C, Si X, et al.Stochastic degradation process modeling and remaining useful life estimation with flexible random-effects[J].Journal of the Franklin Institute, 2017, 354(6):2477-2499
[30]Zhang Y, Xiong R, He H, et al.Lithium-ion battery remai- ning useful life prediction with Box-Cox transformation an d Monte Carlo simulation[J], 2018: 1-1.
[31]Zhang Z, Si X, Hu C, et al.Degradation Data Analysis and Remaining Useful Life Estimation: A Review on Wiener-Process-Based Methods[J]. European Journal of Operational Research, 2018:S0377221718301486.
[32]Si X-S, Wang W, Hu C-H, et al.Remaining Useful Life Estimation Based on a Nonlinear Diffusion Degradation Process[J].IEEE Transactions on Reliability, 2012, 61(1):50-67
[33]Nguyen K T P, Fouladirad M, Grall A.Model selection for degradation modeling and prognosis with health monitoring data[J]. Reliability Engineering & System Safety, 2018, 169: 105-116.
[34]Z.-Q. Wang, C. -H. Hu, W. Wang and X. -S. Si, " An Additive Wiener Process-Based Prognostic Model for Hybrid Deteriorating Systems, " in IEEE Transactions on Reliability, vol. 63, no. 1, pp. 208-222, March 2014.
[35]B.Saha and K. Goebel. Battery data set. [Online]. Available:http://ti.arc.nasa.gov/project/prognostic-data-repository