基于退化模型动态校准的设备剩余寿命预测方法

  • 任超 ,
  • 李慧琴 ,
  • 李天梅 ,
  • 张建勋 ,
  • 司小胜
展开
  • 1. 火箭军工程大学
    2. 清华大学
    3. 第二炮兵工程大学

收稿日期: 2022-12-01

  修回日期: 2023-02-14

  网络出版日期: 2023-02-17

基金资助

复杂系统寿命

Remaining Useful Life Prediction Method for Equipment With Dynamic Calibration of Degradation Model

  • REN Chao ,
  • LI Hui-Qin ,
  • LI Tian-Mei ,
  • ZHANG Jian-Xun ,
  • SI Xiao-Sheng
Expand

Received date: 2022-12-01

  Revised date: 2023-02-14

  Online published: 2023-02-17

摘要

剩余寿命预测是实现随机退化设备健康管理的关键技术。统计数据驱动的方法作为剩余寿命预测领域的典型方法,一般采用随机模型建模设备性能退化变量演变规律,以概率分布的形式给出剩余寿命分布的表达式,为剩余寿命预测不确定性的量化提供了极大的便利。现有研究中这类方法对设备退化过程建模和预测时,一般采用固定的退化模型函数形式,然后利用设备退化监测数据仅对模型参数进行估计和更新以实现退化模型的校准。然而,退化模型函数形式的选择本身是一个难题,尤其在模型函数形式选择不当时仅通过更新模型参数难以有效实现退化模型的校准,进而影响剩余寿命预测的准确性。鉴于此,本文提出了一种基于退化模型动态校准的设备剩余寿命预测方法,该方法首先建立了基于非线性扩散过程的设备随机退化过程模型,利用设备的退化监测数据运用Bayesian方法对模型参数进行估计,据此对设备未来退化趋势进行预测;然后,利用退化趋势预测误差建立了模型误差的参数化模型对退化模型进行补偿以校准退化模型函数形式,同时对补偿后的退化模型参数采用Bayesian方法进行更新,由此实现了对设备退化模型函数形式和参数的同时动态校准;在此基础上,推导给出了退化模型动态校准下的设备剩余寿命分布。最后,通过数值仿真和锂电池数据验证了所提方法的实用性和有效性。

本文引用格式

任超 , 李慧琴 , 李天梅 , 张建勋 , 司小胜 . 基于退化模型动态校准的设备剩余寿命预测方法[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2023.28345

Abstract

Remaining useful life (RUL) prediction is the key technique to implement the health management of stochastic degrading equipment. As one of the typical methods for RUL prediction, statistical data-driven methods generally adopt the stochastic model to characterize the evolving progression of the equipment’s performance degradation variable and provide the probabilistic distribution of the RUL facilitating the uncertainty quantification of the RUL prediction. In existing studies with such methods for degradation modeling and RUL prediction, the fixed functional form of the degradation model is adopted and the model parameters are estimated or updated by the degradation monitoring data of the concerned equipment to perform the model calibration. However, selecting the functional form of the degradation model is itself a challenging problem. More importantly, when the selected functional form of the degradation model is inappropriate, it is difficult and ineffective to calibrate the degradation model simply by updating the model parameters, and the prediction accuracy will be thus affected. In this paper, a RUL prediction method for equipment is developed based on dynamic calibration of degradation model. First, the stochastic degradation model is constructed based on the nonlinear diffusion process and the model parameters are estimated through the degradation monitoring data of the equipment to predict the future degradation trend. Then, the parametric model for the degradation prediction errors is established to compensate for the degradation model to calibrate the functional form of the degradation model. At the meanwhile, the parameters of the calibrated model are updated based on the method to achieve the simultaneous calibration of the functional form and parameters of the degradation model. With the calibrated model, the RUL distribution of the equipment is derived for the RUL prediction. Finally, the developed method is validated by the numerical simulations and lithium battery data.

参考文献

[1]李天梅 司小胜 张建勋.多源传感监测线性退化设备数模联动的剩余寿命预测方法[J]. 航空学报, doi: 10.7527/S1000-6893.2022.27190.
[2]LI Tianmei Xiao-Sheng Si Zhang Jianxun.Data-Model Interactive Remaining Useful Life Prediction Method for Multi-Sensor Monitored Linear Stochastic Degrading Devices[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, doi: 10.7527/S1000-6893.2022.27190.
[3]陆宁云, 陈闯, 姜斌, 邢尹.复杂系统维护策略最新研究进展:从视情维护到预测性维护[J].自动化学报, 2021, 47(01):1-17
[4]Lu Ning-Yun, Chen Chuang, Jiang Bin, Xing Yin.Latest progress on maintenance strategy of complex system: from condition-based maintenance to predictive maintenance[J].Acta Automatica Sinica, 2021, 47(1):1-
[5]曹明, 王鹏, 左洪福, 曾海军, 孙见忠, 杨卫东, 魏芳, 陈雪峰.民用航空发动机故障诊断与健康管理现状、挑战与机遇Ⅱ: 地面综合诊断、寿命管理和智能维护维修决策[J].航空学报, 2022, 43(9):625574-625574
[6]CAO Ming, WANG Peng, ZUO Hongfu, ZENG Haijun, SUN Jianzhong, YANG Weidong, WEI Fang, CHEN Xuefeng.Current status,challenges and opportunities of civil aero-engine diagnostics & health management Ⅱ: Comprehensive off-board diagnosis,life management and intelligent condition based MRO[J].ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9):625574-625574
[7]Peng Y, Liu D, Peng X.A review:Prognostics and health management[J].Journal of Electronic Measurement and Instrument, 2010, 24(1):1-9
[8]Dawid A P.Statistical theory: the prequential approach (with discussion)[J].Journal of Royal Statistical Society: Series A, 1984, 147(2):278-292
[9]Jardine AKS, Lin D, Banjevic D.A review on machinery diagnostics and prognostics implementing condition-based maintenance[J].Mechanical Systems and Signal Processing, 2006, 20(7):1483-1510
[10]Fan J J, Yung K C, Pecht M.Physics-of-Failure-Based Prognostics and Health Management for High-Power White Light-Emitting Diode Lighting[J].IEEE Transactions on Device and Materials Reliability, 2011, 11(3):407-416
[11]Si X S, Wang W B, Hu C H, et al.Remaining useful life estimation-A review on the statistical data driven approaches[J].European Journal of Operational Research, 2011, 213(1):1-14
[12]裴洪, 胡昌华, 司小胜, 张建勋, 庞哲楠, 张鹏.基于机器学习的设备剩余寿命预测方法综述[J].机械工程学报, 2019, 55(08):1-13
[13]PEI Hong, HU Changhua, SI Xiaosheng, ZHANG Jianxun, PANG Zhenan, ZHANG Peng.Review of Machine Learning Based Remaining Useful Life Prediction Methods for Equipment[J].Journal of Mechanical Engineering, 2019, 55(8):1-13
[14]赵志宏, 张然, 孙诗胜.基于关系网络的轴承剩余使用寿命预测方法[J].自动化学报, 2022, 45(x):1-
[15]Zhao Zhi-Hong, Zhang Ran, Sun Shi-Sheng.Bearing remaining useful life prediction based on relation network[J].Acta Automatica Sinica, 2022, 45(x):1-
[16]X.Li, Y. X. Xu, N. P. Li, B. Yang, and Y. G. Lei, “Remaining useful life prediction with partial sensor malfunctions using deep adversarial networks, ” IEEE/CAA J. Autom. Sinica.
[17]R.B. Jin, M. Wu, K. Y. Wu, K. Z. Gao, Z. H. Chen, and X. L. Li, “Position encoding based convolutional neural networks for machine remaining useful life prediction, ” IEEE/CAA J. Autom. Sinica, vol. 9, no. 8, pp. 1427–1439, Aug. 2022.
[18]张晟斐, 李天梅, 胡昌华, 杜党波, 司小胜.基于深度卷积生成对抗网络的缺失数据生成方法及其在剩余寿命预测中的应用[J].航空学报, 2022, 43(8):225708-225708
[19]ZHANG Shengfei, LI Tianmei, HU Changhua, DU Dangbo, SI Xiaosheng.Missing data generation method and its application in remaining useful life prediction based on deep convolutional generative adversarial network[J].ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8):225708-225708
[20]刘学娟.基于随机系数回归模型的退化过程及维修策略[J].控制与决策, 2021, 36(03):754-760
[21]Liu Xue-juan.Degradation process and maintenance planning based on random coefficient regression model[J].Journal of Control and Decision. 2021, 36(03):75 4-760 (in Chinese).
[22]王玺, 胡昌华, 任子强, 熊薇.基于非线性过程的航空发动机性能衰减建模与剩余寿命预测[J].航空学报, 2020, 41(2):223291-223291
[23]WANG Xi, HU Changhua, REN Ziqiang, XIONG Wei.Performance degradation modeling and remaining useful life prediction for aero-engine based on nonlinear Wiener process[J].ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(2):223291-223291
[24]Giorgio M, Mele A, Pulcini G.A perturbed gamma degradation process with degradation dependent non‐Gaussian measurement errors[J].Applied Stochastic Models in Business and Industry, 2018, 35(2):198-210
[25]Chen X, Sun X, Si X, et al.Remaining Useful Life Prediction Based on an Adaptive Inverse Gaussian Degradation Process with Measurement Errors[J].IEEE Access, 2019, PP(99):1-1
[26]Li T, Pei H, Pang Z, et al.A Sequential Bayesian Updated Wiener Process Model for Remaining Useful Life Prediction[J].IEEE Access, 2019, PP(99):1-1
[27]V.R. Joseph, I.T. Yu. Reliability improvement experiments with degradation data. IEEE Transactions on Reliability, 55(1):149-157, 2006.
[28]Si X, Ren Z, Hu X, et al.A Novel Degradation Modeling and Prognostic Framework for Closed-Loop Systems With Degrading Actuator[J].IEEE Transactions on Industrial El- ectronics, 2020, 67(11):9635-9647
[29]Zhang Z, Hu C, Si X, et al.Stochastic degradation process modeling and remaining useful life estimation with flexible random-effects[J].Journal of the Franklin Institute, 2017, 354(6):2477-2499
[30]Zhang Y, Xiong R, He H, et al.Lithium-ion battery remai- ning useful life prediction with Box-Cox transformation an d Monte Carlo simulation[J], 2018: 1-1.
[31]Zhang Z, Si X, Hu C, et al.Degradation Data Analysis and Remaining Useful Life Estimation: A Review on Wiener-Process-Based Methods[J]. European Journal of Operational Research, 2018:S0377221718301486.
[32]Si X-S, Wang W, Hu C-H, et al.Remaining Useful Life Estimation Based on a Nonlinear Diffusion Degradation Process[J].IEEE Transactions on Reliability, 2012, 61(1):50-67
[33]Nguyen K T P, Fouladirad M, Grall A.Model selection for degradation modeling and prognosis with health monitoring data[J]. Reliability Engineering & System Safety, 2018, 169: 105-116.
[34]Z.-Q. Wang, C. -H. Hu, W. Wang and X. -S. Si, " An Additive Wiener Process-Based Prognostic Model for Hybrid Deteriorating Systems, " in IEEE Transactions on Reliability, vol. 63, no. 1, pp. 208-222, March 2014.
[35]B.Saha and K. Goebel. Battery data set. [Online]. Available:http://ti.arc.nasa.gov/project/prognostic-data-repository
文章导航

/