弯扭涡轮叶片前缘复合角孔气膜冷却
收稿日期: 2022-11-28
修回日期: 2022-12-13
录用日期: 2023-02-10
网络出版日期: 2023-02-17
基金资助
国家自然科学基金(U2241268);陕西省创新能力支撑计划(2023-CX-TD-19)
Film cooling with compound angle holes in leading edge of twisted turbine blade
Received date: 2022-11-28
Revised date: 2022-12-13
Accepted date: 2023-02-10
Online published: 2023-02-17
Supported by
National Natural Science Foundation of China(U2241268);Innovation Capability Support Program of Shaanxi Province(2023-CX-TD-19)
任明 , 刘存良 , 杜昆 , 张丽 , 朱惠人 , 张博伦 . 弯扭涡轮叶片前缘复合角孔气膜冷却[J]. 航空学报, 2023 , 44(18) : 128315 -128315 . DOI: 10.7527/S1000-6893.2023.28315
An experiment employing Pressure Sensitive Paint (PSP) technique is conducted and the influence of Mass Flow rate Ratio (MFR) and Density Ratio (DR) on the film cooling characteristic of the twisted turbine blade leading edge is analyzed. Numerical simulation is performed to investigate the effect of shaped holes and hole arrangement on the film cooling characteristic of the leading edge. Results show that the variation of MFR has slight effect on film cooling effectiveness of the leading edge. However, the increase of the DR can increase the spanwise average film cooling effectiveness by 30%-60%, which is in good agreement with the numerical results. The improvement of the spanwise average film cooling effectiveness is more than 200% by directly expanding the hole diameter or applying the diffused film cooling hole. The overcooling and film lifting can be avoided at the leading edge with compound angle holes using the asymmetric cross holes arrangement, significantly improving the film cooling effectiveness.
1 | BOGARD D G, THOLE K A. Gas turbine film cooling[J]. Journal of Propulsion and Power, 2006, 22(2): 249-270. |
2 | LANGSTON L S. Powering out of trouble[J]. Mechanical Engineering, 2013, 135(12): 36-41. |
3 | BUNKER R S. Evolution of turbine cooling[C]∥ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. New York: ASME, 2017. |
4 | GOLDSTEIN R J, ECKERT E R G, RAMSEY J W. Film cooling with injection through holes: Adiabatic wall temperatures downstream of a circular hole[J]. Journal of Engineering for Gas Turbines and Power, 1968, 90(4): 384-393. |
5 | PEDERSEN D R, ECKERT E R G, GOLDSTEIN R J. Film cooling with large density differences between the mainstream and the secondary fluid measured by the heat-mass transfer analogy[J]. Journal of Heat Transfer, 1977, 99(4): 620-627. |
6 | SINHA A K, BOGARD D G, CRAWFORD M E. Film-cooling effectiveness downstream of a single row of holes with variable density ratio[J]. Journal of Turbomachinery, 1991, 113(3): 442-449. |
7 | GOLDSTEIN R J, ECKERT E R G, BURGGRAF F. Effects of hole geometry and density on three-dimensional film cooling[J]. International Journal of Heat and Mass Transfer, 1974, 17(5): 595-607. |
8 | GOLDSTEIN R J. Film cooling[J]. Advances in Heat Transfer, 1971, 7: 321-379. |
9 | LIU C L, LI B R, SONG H, et al. Study on effects of spanwise-expansion parameters on film cooling effectiveness of diffusion shaped hole configurations[J]. Journal of Turbomachinery, 2023, 145(1): 011003. |
10 | LIU C L, YE L, ZHANG F, et al. Film cooling performance evaluation of the furcate hole with cross-flow coolant injection: A comparative study[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120457. |
11 | FURUKAWA T, LIGRANI P M. Transonic film cooling effectiveness from shaped holes on a simulated turbine airfoil[J]. Journal of Thermophysics and Heat Transfer, 2002, 16(2): 228-237. |
12 | DEM KAMPE T AUF, V?LKER S, S?MEL T, et al. Experimental and numerical investigation of flow field and downstream surface temperatures of cylindrical and diffuser shaped film cooling holes[C]∥ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. New York: ASME, 2011. |
13 | YE L, LIU C L, LI B R, et al. Detailed showerhead cooling effectiveness measurements on the notched leading-edge surface: Effect of freestream turbulence and density ratio[J]. International Communications in Heat and Mass Transfer, 2022, 135: 106142. |
14 | YE L, LIU C L, DU K, et al. Influences of groove configuration and density ratio on grooved leading-edge showerhead film cooling using the pressure sensitive paint measurement technique[J]. International Journal of Heat and Mass Transfer, 2022, 190: 122641. |
15 | ELNADY T, HASSAN I, KADEM L, et al. Cooling effectiveness of shaped film holes for leading edge[J]. Experimental Thermal and Fluid Science, 2013, 44: 649-661. |
16 | YE L, LIU C L, XU Z P, et al. Experimental investigation on the adiabatic film effectiveness for counter-inclined simple and laid-back film-holes of leading edge[J]. Journal of Thermal Science, 2020, 29(3): 772-783. |
17 | ZENG L Y, CHEN P T, LI X Y, et al. Influence of simplifications of blade in gas turbine on film cooling performance[J]. Applied Thermal Engineering, 2018, 128: 877-886. |
18 | LI H W, HAN F, MA Y W, et al. Experimental investigation on the effects of rotation and the blowing ratio on the leading-edge film cooling of a twist turbine blade[J]. International Journal of Heat and Mass Transfer, 2019, 129: 47-58. |
19 | 韩枫, 李海旺, 马薏文, 等. 旋转对弯扭涡轮叶片前缘气膜冷却的影响[J]. 航空动力学报, 2019, 34(6): 1352-1363. |
HAN F, LI H W, MA Y W, et al. Effect of rotation on the leading-edge region film cooling of a twisted turbine blade[J]. Journal of Aerospace Power, 2019, 34(6): 1352-1363 (in Chinese). | |
20 | 邢宇明, 谢刚, 周志宇,等. 旋转条件下动叶前缘气膜孔排布局数值研究[J/OL]. 航空动力学报, (2023-03-29)[2023-06-11]. . |
XING Y M, XIE G, ZHOU Z Y, et al. Numerical investigation on film cooling hole arrangement effect for rotating blade leading edge[J/OL]. Journal of Aerospace Power, (2023-03-29)[2023-06-11]. . | |
21 | 陈柳生, 周强, 金熹高, 等. 压力敏感涂料及其测量技术[J]. 航空学报, 2009, 30(12): 2435-2448. |
CHEN L S, ZHOU Q, JIN X G, et al. Pressure-sensitive paint and its measuring technique[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(12): 2435-2448 (in Chinese). | |
22 | 叶林, 刘存良, 朱安冬, 等. 紧凑凸肋通道对尾缘劈缝气膜冷却特性的影响[J]. 航空学报, 2022, 43(3): 125174. |
YE L, LIU C L, ZHU A D, et al. Influence of compact-ribbed passage on trailing-edge cutback film cooling performance[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 125174 (in Chinese). | |
23 | ISLAMI S B, ALAVI TABRIZI S P, JUBRAN B A, et al. Influence of trenched shaped holes on turbine blade leading edge film cooling[J]. Heat Transfer Engineering, 2010, 31(10): 889-906. |
24 | HAN J C, RALLABANDI A P. Turbine blade film cooling using PSP technique[J]. Frontiers in Heat and Mass Transfer, 2010, 1(1): 1-21. |
25 | 张博伦, 朱惠人, 刘存良, 等. 扇形叶栅通道中密度比和流量比对叶片表面全气膜冷却特性的影响[J]. 推进技术, 2021, 42(5): 1103-1111. |
ZHANG B L, ZHU H R, LIU C L, et al. Effects of density ratio and mass flow rate ratio on vane full coverage film cooling characteristics in fan-shaped cascade tunnel[J]. Journal of Propulsion Technology, 2021, 42(5): 1103-1111 (in Chinese). | |
26 | 李国帅, 周强, 刘祥, 等. 压力敏感涂料特性及其校准技术实验研究[J]. 航空学报, 2013, 34(2): 227-234. |
LI G S, ZHOU Q, LIU X, et al. Experimental research of pressure sensitive paint performance and calibration technique[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 227-234 (in Chinese). | |
27 | 陈大为. 尾迹影响下的涡轮叶片表面气膜冷却有效度研究[D]. 西安: 西北工业大学, 2019. |
CHEN D W. Effect of unsteady wake on film cooling effectiveness of turbine blade[D]. Xi’an: Northwestern Polytechnical University, 2019 (in Chinese). | |
28 | 刘存良, 朱惠人, 白江涛. 收缩-扩张形气膜孔提高气膜冷却效率的机理研究[J]. 航空动力学报, 2008, 23(4): 598-604. |
LIU C L, ZHU H R, BAI J T. Study on the physics of film-cooling effectiveness enhancement by the converging-expanding hole[J]. Journal of Aerospace Power, 2008, 23(4): 598-604 (in Chinese). | |
29 | 闫浩楠, 张丽, 朱惠人, 等. 基于RSM的带有热障涂层气膜孔参数优化的数值研究[J/OL].航空动力学报, (2022-05-25)[2023-06-11]. . |
YAN H N, ZHANG L, ZHU H R, et al. Numerical study on parameter optimization of film hole with thermal barrier coating based on RSM[J/OL]. Journal of Aerospace Power, (2022-05-25)[2023-06-11]. . | |
30 | 李雪英. 气膜冷却各向异性湍流场中流动传热的相互作用机理研究[D]. 北京: 清华大学, 2013. |
LI X Y. Research on the mechanism of flow and heat transfer interaction in anisotropic turbulent film cooling flows[D]. Beijing: Tsinghua University, 2013 (in Chinese). |
/
〈 |
|
〉 |