材料工程与机械制造

铝/铜层状复合板真空电子束焊接行为

  • 高会良 ,
  • 陈洪胜 ,
  • 王文先 ,
  • 柴斐 ,
  • 汪卓然 ,
  • 刘国廷 ,
  • 巩鹏飞
展开
  • 1.太原理工大学 机械与运载工程学院,太原 030024
    2.智能水下装备山西省重点实验室,太原 030024
    3.太原理工大学 材料科学与工程学院,太原 030024

收稿日期: 2022-11-19

  修回日期: 2022-12-12

  录用日期: 2023-01-08

  网络出版日期: 2023-02-17

基金资助

山西省重点研发计划(202102150401003);中央引导地方项目(YDZJSX2022A018);大学生创新创业训练计划项目(20210078)

Vacuum electron beam welding behavior of Al/Cu bimetallic composite plate

  • Huiliang GAO ,
  • Hongsheng CHEN ,
  • Wenxian WANG ,
  • Fei CHAI ,
  • Zhuoran WANG ,
  • Guoting LIU ,
  • Pengfei GONG
Expand
  • 1.College of Mechanical and Vehicle Engineering,Taiyuan University of Technology,Taiyuan 030024,China
    2.College of Materials Science and Engineering,Taiyuan University of Technology,Taiyuan 030024,China
    3.Shanxi Key Laboratory of Intelligent Underwater Equipment,Taiyuan 030024,China

Received date: 2022-11-19

  Revised date: 2022-12-12

  Accepted date: 2023-01-08

  Online published: 2023-02-17

Supported by

Key Research and Development Program of Shanxi Province(202102150401003);Central Guidance Local Project(YDZJSX2022A018);College Students’ Innovative Entrepreneurial Training Plan Program(20210078)

摘要

铝/铜(Al/Cu)层状复合板兼具铝合金和铜合金的双重优势,在航空航天等领域具有广泛的应用前景。采用真空电子束焊接方法对Al/Cu层状复合板进行焊接(铝层在上、铜层在下),研究不同的焊接工艺参数对焊接接头成形性能、微观组织及力学性能的影响。试验结果表明:铝层焊缝主要由α⁃Al和Al⁃Cu共晶组织组成,铜层焊缝中心为Al2Cu和AlCu金属间化合物,边缘由Al4Cu9、AlCu和Al2Cu金属间化合物组成。平行铝层和铜层处显微硬度在母材与热影响区变化不明显,铝/铜界面层处母材→热影响区→焊缝的显微硬度呈逐渐增大趋势,硬度最大为578.1 HV,垂直界面处显微硬度逐渐增大,最大硬度为590.4 HV。纳米压痕显示在焊缝上部、界面区域和下部的压痕回复率分别为6.31%、10.88%和7.84%,焊缝中心处有较高的弹性模量和硬度。焊接接头的抗拉强度最高为64.38 MPa,为母材强度的36%,延伸率为1.44%,铝层焊缝呈现为准解理断裂,铜层焊缝呈现为沿晶断裂,断裂位置发生在Al⁃Cu共晶组织和Al2Cu的金属间化合物区域。

本文引用格式

高会良 , 陈洪胜 , 王文先 , 柴斐 , 汪卓然 , 刘国廷 , 巩鹏飞 . 铝/铜层状复合板真空电子束焊接行为[J]. 航空学报, 2023 , 44(19) : 428288 -428288 . DOI: 10.7527/S1000-6893.2023.28288

Abstract

Aluminum/copper (Al/Cu) bimetallic composite plate has the advantages of both aluminum alloy and copper alloy, and has a wide application prospect in aerospace and other fields. In this paper, vacuum electron beam welding (EBW) method was used to weld Al/Cu bimetallic composite plate (Al layer on top and Cu layer on bottom), and the influence of different welding parameters on the formability, microstructure and mechanical properties of welded joints was studied. The experimental results show that the weld of Al layer is mainly composed of α-Al and Al-Cu eutectic structure, the weld center of Cu layer is composed of Al2Cu and AlCu intermetallic compounds, and the edge is composed of Al4Cu9, AlCu, and Al2Cu intermetallic compounds. The microhardness of the base material → heat affected zone → weld at the Al/Cu interface layer increases gradually, and the maximum hardness is 578.1 HV. The maximum hardness is 590.4 HV at the vertical interface. The nanoindentation show that the indentation recovery rates in the upper part of the weld, the interface area and the lower part of the weld are 6.31%, 10.88% and 7.84%, respectively, and the center of the weld has higher elastic modulus and hardness. The maximum tensile strength of the welded joint is 64.38 MPa, 36% of the strength of the base metal, and the elongation is 1.44%. The Al layer of the welded joint shows quasi-cleavage fracture, while the Cu layer shows intergranular fracture, which occurs in the region of Al-Cu eutectic structure and Al2Cu intermetallic compound.

参考文献

1 宋刚, 刘振夫, 程继文, 等. 6061-T6铝合金激光诱导电弧焊轧复合成形组织性能[J]. 航空学报202243(2): 625880.
  SONG G, LIU Z F, CHENG J W, et al. Microstructure and properties of welding-rolling composite forming for 6061-T6 aluminum alloy by laser induced arc welding[J]. Acta Aeronautica et Astronautica Sinica202243(2): 625880 (in Chinese).
2 姜春阳, 吴利辉, 常云龙, 等. 铝合金与树脂基复合材料的铆接/搅拌摩擦搭接复合焊接[J]. 航空学报202243(2): 625190.
  JIANG C Y, WU L H, CHANG Y L, et al. Hybrid welding of riveting/friction stir lap joining of aluminum alloy to resin-based composite[J]. Acta Aeronautica et Astronautica Sinica202243(2): 625190 (in Chinese).
3 雍耀维, 赵瑞恒, 王军, 等. 铜合金表面激光熔覆镍基复合涂层性能分析[J]. 航空学报202243(4): 525604.
  YONG Y W, ZHAO R H, WANG J, et al. Properties of nickel-based composite alloy coating on copper reinforced by laser cladding[J]. Acta Aeronautica et Astronautica Sinica202243(4): 525604 (in Chinese).
4 SADEGHIAN A, IQBAL N. A review on dissimilar laser welding of steel-copper, steel-aluminum, aluminum-copper, and steel-nickel for electric vehicle battery manufacturing[J]. Optics & Laser Technology2022146: 107595.
5 李志强, 陈玮. 高能束流加工技术在航空领域的应用进展[J]. 航空学报202243(4): 526882.
  LI Z Q, CHEN W. Application progress of power beam processing technology in aeronautical industry[J]. Acta Aeronautica et Astronautica Sinica202243(4): 526882 (in Chinese).
6 CHENG Y L, ZUO X J, YUAN X G, et al. Life prediction of copper-aluminium composite plate, based on electrical conductivity in a marine atmosphere[J]. Engineering Failure Analysis2021123: 105299.
7 冯吉才. 异种材料连接研究进展综述[J]. 航空学报202243(2): 626413.
  FENG J C. Research progress on dissimilar materials joining[J]. Acta Aeronautica et Astronautica Sinica202243(2): 626413 (in Chinese).
8 WANG X G, LI X G, WANG C G. Influence of diffusion brazing parameters on microstructure and properties of Cu/Al joints[J]. Journal of Manufacturing Processes201835: 343-350.
9 YANG Z Y, FANG H, JIN K N, et al. Modeling of microstructure evolution coupled with molten pool oscillation during electron beam welding of an Al-Cu alloy[J]. International Journal of Heat and Mass Transfer2022189: 122735.
10 LIU J, CAO B. Microstructure characteristics and mechanical properties of the Cu/Al dissimilar joints by electric current assisted ultrasonic welding[J]. Journal of Materials Processing Technology2021297: 117239.
11 YAN S H, SHI Y. Influence of laser power on microstructure and mechanical property of laser-welded Al/Cu dissimilar lap joints[J]. Journal of Manufacturing Processes201945: 312-321.
12 唐九兴, 吴明孝, 石磊, 等. 铝/铜异种金属双面搅拌摩擦焊接成形及接头力学性能[J]. 中国有色金属学报202232(9): 2556-2567.
  TANG J X, WU M X, SHI L, et al. Aluminum/copper dissimilar metal double-sided friction stir welding formation and mechanical properties of joint [J]. The Chinese Journal of Nonferrous Metals202232(9): 2556-2567 (in Chinese).
13 李凯, 付鹏飞, 唐代斌, 等. TC4钛合金电子束表面造型形貌及近表面组织特征[J]. 航空学报201738(12): 421361.
  LI K, FU P F, TANG D B, et al. Topography and near-surface microstructure of TC4 alloy treated by electron beam surfi-sculptTM [J]. Acta Aeronautica et Astronautica Sinica201738(12): 421361 (in Chinese).
14 陈国庆, 树西, 柳峻鹏, 等. 真空电子束焊接技术应用研究现状[J]. 精密成形工程201810(1): 31-39.
  CHEN G Q, SHU X, LIU J P, et al. Development status of applications of vacuum electron beam welding technology[J]. Journal of Netshape Forming Engineering201810(1): 31-39 (in Chinese).
15 郑森, 程东海, 陈益平, 等. 铝/铜电子束焊接头的显微组织与力学性能[J]. 中国有色金属学报201626(5): 995-1000.
  ZHENG S, CHENG D H, CHEN Y P, et al. Mechanical properties and microstructure of joint of Al and Cu by electron beam welding[J]. The Chinese Journal of Nonferrous Metals201626(5): 995-1000 (in Chinese).
16 李福山, 徐荣正, 王鹏飞, 等. Al-Cu异种金属的电子束搭接焊接研究[J]. 特种铸造及有色合金201939(5): 556-560.
  LI F S, XU R Z, WANG P F, et al. Research on electron beam lap welding of Al/Cu dissimilar metals[J]. Special Casting & Nonferrous Alloys201939(5): 556-560 (in Chinese).
17 彭迟. 基于电子束焊的异种金属熔焊连接机理[D]. 南昌: 南昌航空大学, 2015.
  PENG C. Welding process and joint formation mechanism of dissimilar metals based on electron beam welding[D]. Nanchang: Nanchang Hangkong University, 2015 (in Chinese).
18 闫胜鸿. 铝/铜异种金属激光焊接技术研究[D]. 长春: 长春理工大学, 2020.
  YAN S H. Study on laser lap welding of aluminum and copper dissimilar metals[D]. Changchun: Changchun University of Science and Technology, 2020 (in Chinese).
19 曹飞. Al/Cu双金属复层材料界面扩散行为及微观组织演变[D]. 大连: 大连理工大学, 2018.
  CAO F. Diffusion behavior and microstructural evolution on interfaces in Al/Cu bimetal[D]. Dalian: Dalian University of Technology, 2018 (in Chinese).
20 王富鑫, 骆良顺, 王亮, 等. 合金成分和冷却速率对Al-Cu合金凝固过程中初生Al2Cu相生长形貌的影响[J]. 金属学报201652(3): 361-368.
  WANG F X, LUO L S, WANG L, et al. Effect of alloy composition and cooling rate on the growth morphology of primary Al2Cu phase in al-cu alloy during solidification[J]. Acta Metallurgica Sinica201652(3): 361-368 (in Chinese).
21 东青. Al-Cu合金定向凝固过程中的形态演化[D]. 上海: 上海交通大学, 2011.
  DONG Q. Morphological evolution during directional solidification of Al-Cu alloys[D]. Shanghai: Shanghai Jiao Tong University, 2011 (in Chinese).
22 KARTHEEK S S M, VAMSI K V, RAVISANKAR B, et al. Microstructural and nanoindentation studies across diffusion-bonded interfaces in Al/Cu metal intermetallic laminates[J]. Procedia Materials Science20146: 709-715.
文章导航

/