二维与三维机织复合材料面内力学性能对比
收稿日期: 2022-11-15
修回日期: 2022-12-07
录用日期: 2023-02-09
网络出版日期: 2023-02-17
基金资助
国家科技重大专项(2017-VII-0011-0106);江苏省基础研究计划(自然科学基金)(BK20220165)
Comparison of in-plane mechanical properties of 2D and 3D woven composites
Received date: 2022-11-15
Revised date: 2022-12-07
Accepted date: 2023-02-09
Online published: 2023-02-17
Supported by
National Science and Technology Major Project(2017-VII-0011-0106);Foundation Research Project of Jiangsu Province (the Natural Science Fund)(BK20220165)
设计并制备了结构形式和工艺参数相同的二维机织层合和三维机织复合材料,利用数字图像同步测试技术(DIC)系统地开展了经、纬向拉伸、压缩试验和面内剪切试验。结合试样表面应变场的演化过程和断裂形貌分析,对比研究了二维机织层合复合材料和三维机织复合材料的承载机制、力学性能和失效机制的差异。结果表明,经纱在层间的交织联锁对机织复合材料的宏观力学行为和承载机制有重要影响,三维机织复合材料牺牲了经向拉伸和压缩性能,得到了更好的结构整体性和更高的纬向性能。此外,三维机织复合材料的经向拉伸应力-应变曲线具有明显的非线性特征。同时,经纱对纬纱的强约束导致了纤维束/基体界面上的弱粘接,降低了三维机织复合材料抵抗剪切变形的能力。
关键词: 二维机织层合复合材料; 三维机织复合材料; 力学性能; 失效机制; 层层交联互锁结构
孙洋 , 黄建 , 韩晨晨 , 赵振强 , 周海丽 , 孙方方 , 李超 , 张超 , 张立泉 . 二维与三维机织复合材料面内力学性能对比[J]. 航空学报, 2023 , 44(18) : 428267 -428267 . DOI: 10.7527/S1000-6893.2023.28267
2D and 3D woven composites with the same structure form and weaving process parameters were designed and prepared. Tensile, compressive and in-plane shear tests were systematically carried out by the digital image correlation method. The mechanical properties, carrying and failure mechanism of 2D and 3D woven composites were studied in combination with the evolution of surface strain field and fracture morphology. It is shown that the interlocking of warp yarns between layers significantly influences the macroscopic mechanical behavior and carrying mechanism of woven composites. 3D woven composite exhibits better structural integrity and weft mechanical properties at the expense of decrease in warp mechanical performance. Furthermore, the warp tensile strain-stress curves of 3D woven composites have a typical characteristic of nonlinearity. The constraint between warp yarn and weft yarn leads to the weak interface between fiber and matrix, which reduces the in-plane shear capacity of 3D woven composite.
1 | 俞建勇, 赵谦, 祖群. 高性能纤维与织物[M]. 北京: 中国铁道出版社, 2020: 141. |
YU J Y, ZHAO Q, ZU Q. High performance fibers and fabrics[M]. Beijing: China Railway Publishing House, 2020: 141 (in Chinese). | |
2 | 沈尔明, 王志宏, 滕佰秋, 等. 连续纤维增强复合材料在民用航空发动机上的应用[J]. 航空发动机, 2013, 39(2):90-94. |
SHEN E M, WANG Z H, TENG B Q, et al. Application of continuous fiber reinforced composites in civil aeroengines[J]. Aeroengine, 2013, 39(2):90-94 (in Chinese). | |
3 | 陈巍. 先进航空发动机树脂基复合材料技术现状与发展趋势[J]. 航空制造技术, 2016, 56(5): 68-72, 92. |
CHEN W. Status and development trends of polymer matrix composites on advanced aeroengine[J]. Aeronautical Manufacturing Technology, 2016, 56(5): 68-72, 92 (in Chinese). | |
4 | LI Z X, GUO L C, ZHANG L, et al. In situ experimental investigation on the out-plane damage evolution of 3D woven carbon-fiber reinforced composites[J]. Composites Science and Technology, 2018, 162: 101-109. |
5 | PANKOW M, JUSTUSSON B, RIOSBAAS M, et al. Effect of fiber architecture on tensile fracture of 3D woven textile composites[J]. Composite Structures, 2019, 225: 111139. |
6 | NAIK N K. Woven-fibre thermoset composites[M]∥ Fatigue in composites. Amsterdam: Elsevier, 2003: 296-313. |
7 | WALTER T R, SUBHASH G, SANKAR B V, et al. A novel method for dynamic short-beam shear testing of 3D woven composites[J].Experimental Mechanics, 2013, 53(3): 493-503. |
8 | COX B N, DADKHAH M S, MORRIS W L, et al. Failure mechanisms of 3D woven composites in tension, compression, and bending[J]. Acta Metallurgica et Materialia, 1994, 42(12): 3967-3984. |
9 | KUO W S, KO T H, CHEN C P. Effect of weaving processes on compressive behavior of 3D woven composites[J]. Composites Part A: Applied Science and Manufacturing, 2007, 38(2): 555-565. |
10 | MAHADIK Y, ROBSON BROWN K A, HALLETT S R. Characterisation of 3D woven composite internal architecture and effect of compaction[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(7): 872-880. |
11 | MAHADIK Y, HALLETT S R. Effect of fabric compaction and yarn waviness on 3D woven composite compressive properties[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(11): 1592-1600. |
12 | LEE B, LEONG K H, HERSZBERG I. Effect of weaving on the tensile properties of carbon fibre tows and woven composites[J]. Journal of Reinforced Plastics and Composites, 2001, 20(8): 652-670. |
13 | WARREN K C, LOPEZ-ANIDO R A, GOERING J. Experimental investigation of three-dimensional woven composites[J]. Composites Part A: Applied Science and Manufacturing, 2015, 73: 242-259. |
14 | DAI S, CUNNINGHAM P R, MARSHALL S, et al. Influence of fibre architecture on the tensile, compressive and flexural behaviour of 3D woven composites[J]. Composites Part A: Applied Science and Manufacturing, 2015, 69: 195-207. |
15 | SALEH M N, YUDHANTO A, POTLURI P, et al. Characterising the loading direction sensitivity of 3D woven composites: effect of z-binder architecture[J]. Composites Part A: Applied Science and Manufacturing, 2016, 90: 577-588. |
16 | ALY-HASSAN M S, HATTA H, WAKAYAMA S, et al. Comparison of 2D and 3D carbon/carbon composites with respect to damage and fracture resistance[J]. Carbon, 2003, 41(5): 1069-1078. |
17 | HUANG J, ZHAO Q, FENG Y B, et al. Effect of microcracks on the tensile properties of 3D woven composites[J]. Coatings, 2021, 11(7): 794. |
18 | CHOU S, CHEN H C, CHEN H E. Effect of weave structure on mechanical fracture behavior of three-dimensional carbon fiber fabric reinforced epoxy resin composites[J]. Composites Science and Technology, 1992, 45(1): 23-35. |
19 | KIASAT M S, SANGTABI M R. Effects of fiber bundle size and weave density on stiffness degradation and final failure of fabric laminates[J]. Composites Science and Technology, 2015, 111: 23-31. |
20 | 刘增飞, 刘凯, 张斌斌, 等. 纱线规格对3D机织复合材料拉伸性能的影响[J]. 航空学报, 2022, 43(6): 521-530. |
LIU Z F, LIU K, ZHANG B B, et al. Effect of yarn size on tensile properties of 3Dwoven composites[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 521-530 (in Chinese). | |
21 | 郭瑞卿, 张一帆, 吕庆涛, 等. 多层多向层联三维机织复合材料的拉伸性能[J]. 复合材料学报, 2020, 37(10):2409-2417. |
GUO R Q, ZHANG Y F, LV Q T, et al. Tensile properties of multilayer multiaxial interlock 3D woven composites[J]. Acta Materiae Compositae Sinica, 2020, 37(10):2409-2417 (in Chinese). |
/
〈 |
|
〉 |