航空发动机非定常流固热声耦合专栏

压气机声共振特性理论预测与试验研究

  • 许志远 ,
  • 杨明绥 ,
  • 王萌
展开
  • 中国航发沈阳发动机研究所,沈阳 110015
.E-mail: yangmingsui@126.com

收稿日期: 2022-11-07

  修回日期: 2022-11-28

  录用日期: 2023-02-01

  网络出版日期: 2023-02-17

基金资助

省部级项目

Theoretical prediction and experimental study on acoustic resonance characteristics of certain type of compressor

  • Zhiyuan XU ,
  • Mingsui YANG ,
  • Meng WANG
Expand
  • AECC Shenyang Engine Research Institute,Shenyang  110015,China

Received date: 2022-11-07

  Revised date: 2022-11-28

  Accepted date: 2023-02-01

  Online published: 2023-02-17

Supported by

Provincial or Ministerial Level Project

摘要

航空发动机压气机声共振是一种复杂非定常流动现象,能够造成压气机气动不稳定,甚至可能导致压气机叶片疲劳破坏。针对某高压压气机一级转子叶片振动疲劳失效问题,开展压气机声共振理论研究,建立声波在叶片排间传播与反射的分析模型。发展压气机声共振特性预测方法,对压气机声共振进行预测分析。基于发展的理论预测方法,开展某压气机声共振试验测试,通过多参数动态测试分析技术,获取压气机发生声共振时管道内部模态传播特性和叶片振动特性。试验结果表明:压气机发生声共振时转速与预测结果相吻合,一级转子叶片表现出锁频特征,压气机内脉动压力场、同级转子叶片间均存在强烈的周向传播特性,周向传播模态为13阶,符合特征频率的理论分析结果。一级转子附近脉动压力幅值最大,为声波轴向传播的主反射区,与预测结果相吻合。

本文引用格式

许志远 , 杨明绥 , 王萌 . 压气机声共振特性理论预测与试验研究[J]. 航空学报, 2023 , 44(14) : 628236 -628236 . DOI: 10.7527/S1000-6893.2023.28236

Abstract

The acoustic resonance of aero-engine compressors is a complex unsteady flow phenomenon, which can cause aerodynamic instability of the compressor and may even lead to compressor blade fatigue failure. Aiming at the vibration fatigue failure of the first-stage rotor blade of a certain type of high-pressure compressor, we conduct a theoretical study on acoustic resonance of the compressor, and establish an analysis model of acoustic wave propagation and reflection between blade rows. The acoustic resonance test of a certain type of compressor is carried out based on the developed theoretical prediction method, and the acoustic mode propagation characteristics in the pipeline and blade vibration characteristics are obtained by the multi-parameter dynamic test and analysis technology when the sound resonance of the compressor occurs. The experimental results show that the speed of the compressor is consistent with the predicted results, and that the first-stage rotor blades exhibit frequency locking characteristics. Strong circumferential propagation characteristics are displayed in the sound field and the pressure pulsation field. The circumferential propagation mode is 13 orders, in accordance with the characteristic frequency theory analysis results. The pulsating pressure amplitude near the first stage rotor is the largest which is the main reflection area of acoustic wave, consistent with the predicted results.

参考文献

1 杨明绥, 刘思远, 王德友, 等. 航空发动机压气机声共振现象初探[J]. 航空发动机201238(5): 36-42.
  YANG M S, LIU S Y, WANG D Y, et al. Study of acoustic resonance for aeroengine compressors[J]. Aeroengine201238(5): 36-42 (in Chinese).
2 ROSSITER J. Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds: R. & M. No. 3438[R]. London: Her Majesty's Stationery Office,1966.
3 MA R L, SLABOCH P E, MORRIS S C. Fluid mechanics of the flow-excited Helmholtz resonator[J]. Journal of Fluid Mechanics2009623: 1-26.
4 PARKER R. Resonance effects in wake shedding from parallel plates: Some experimental observations[J]. Journal of Sound and Vibration19664(1): 62-72.
5 PARKER R. Resonance effects in wake shedding from compressor blading[J]. Journal of Sound and Vibration19676(3): 302-309.
6 CUMPSTY N A, WHITEHEAD D S. The excitation of acoustic resonances by vortex shedding[J]. Journal of Sound and Vibration197118(3): 353-369.
7 WELSH M C, STOKES A N, PARKER R. Flow-resonant sound interaction in a duct containing a plate, part I: Semi-circular leading edge[J]. Journal of Sound and Vibration198495(3): 305-323.
8 HOURIGAN K, THOMPSON M C, TAN B T. Self-sustained oscillations in flows around long blunt plates[J]. Journal of Fluids and Structures200115(3-4): 387-398.
9 KATASONOV M M, SUNG H J, BARDAKHANOV S P. Wake flow-induced acoustic resonance around a long flat plate in a duct[J]. Journal of Engineering Thermophysics201524(1): 36-56.
10 BLEVINS R D. The effect of sound on vortex shedding from cylinders[J]. Journal of Fluid Mechanics1985161: 217-237.
11 REYES E, FINNEGAN S, MESKELL C. Simulation of flow-induced acoustic resonance of bluff bodies in duct flow[C]∥ Proceedings of ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting Collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. New York:ASME, 2011: 805-813.
12 THOMASSIN J, VO H D, MUREITHI N W. Experimental demonstration of the tip clearance flow resonance behind compressor non-synchronous vibration[C]∥ Proceedings of ASME Turbo Expo 2008: Power for Land, Sea, and Air. New York:ASME, 2009: 653-664.
13 PARKER R. Acoustic resonances and blade vibration in axial flow compressors[J]. Journal of Sound and Vibration198492(4): 529-539.
14 CAMP T R. A study of acoustic resonance in a low-speed multistage compressor[J]. Journal of Turbomachinery1999121(1): 36-43.
15 ZIADA S, OENG?REN A, VOGEL A. Acoustic resonance in the inlet scroll of a turbo-compressor[J]. Journal of Fluids and Structures200216(3): 361-373.
16 VIGNAU-TUQUET F, GIRARDEAU D. Aerodynamic rotating vortex instability in a multi-stage axial compressor: ISABE-2005-0025[R]. 2005.
17 HELLMICH B, SEUME J R. Acoustic resonance in a four-stage high-speed axial compressor:ISROMAC10-2004-004 [R]. 2004.
18 洪志亮, 赵国昌, 杨明绥, 等. 航空发动机压气机内部流体诱发声共振研究进展[J]. 航空学报201940(11): 023139.
  HONG Z L, ZHAO G C, YANG M S, et al. Development of flow-induced acoustic resonance in aeroengine compressors[J]. Acta Aeronautica et Astronautica Sinica201940(11): 023139 (in Chinese).
19 TYLER J M, SOFRIN T. Axial flow compressor noise studies[J]. SAE Transactions196270: 309.
20 KAJI S, OKAZAKI T. Propagation of sound waves through a blade row:I.Analysis based on the semi-actuator disk theory[J]. Journal of Sound and Vibration197011(3): 339-353.
21 KERREBROCK J L. Small disturbances in turbomachine annuli with swirl[J]. AIAA Journal197715(6): 794-803.
22 KOCH W. On the transmission of sound waves through a blade row[J]. Journal of Sound and Vibration197118(1): 111-128.
23 HEINIG K E. Sounding propagation in multistage axial flow turbomachines[J]. AIAA Journal198321(1): 98-105.
24 COOPER A J, PEAKE N. Trapped acoustic modes in aeroengine intakes with swirling flow[J]. Journal of Fluid Mechanics2000419: 151-175.
25 RIENSTRA S W. Sound transmission in slowly varying circular and annular lined ducts with flow[J]. Journal of Fluid Mechanics1999380: 279-296.
26 OVENDEN N, EVERSMAN W, RIENSTRA S. Cut-on cut-off transition in flow ducts: comparing multiple-scales and finite-element solutions[C]∥10th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2004.
27 HELLMICH B, SEUME J R. Causes of acoustic resonance in a high-speed axial compressor[J]. Journal of Turbomachinery2008130(3): 031003.
28 AMIET R.Transmission and reflection of sound by a blade row[J]. AIAA Journal19719(10):1893-1894.
29 武卉, 杨明绥, 王德友, 等. 多动态参数同步测试系统构建及其应用[J]. 航空学报201435(2): 391-399.
  WU H, YANG M S, WANG D Y, et al. Construction and application of synchronized test system of multi-dynamic parameters[J]. Acta Aeronautica et Astronautica Sinica201435(2): 391-399 (in Chinese).
文章导航

/