低温高速动静结合型机械密封两相流仿真与实验
收稿日期: 2022-11-04
修回日期: 2022-11-23
录用日期: 2022-12-24
网络出版日期: 2023-02-17
基金资助
国家自然科学基金(52075407);陕西省自然科学基金(2019JM-034)
Theoretical and experimental on two-phase flow mechanism of low-temperature high-speed hydrodynamic mechanical seal
Received date: 2022-11-04
Revised date: 2022-11-23
Accepted date: 2022-12-24
Online published: 2023-02-17
Supported by
National Natural Science Foundation of China(52075407);Natural Science Foundation of Shaanxi Province(2019JM-034)
液体火箭发动机高速涡轮泵轴端动静结合型机械密封端面液膜受低温、高速、高压等极端工况影响极易产生气液两相流现象;诱发两相流的机制及相变对密封的影响规律尚不明确,亟需发展相关的仿真模型并开展实验验证工作。以某高速涡轮泵用动静结合型螺旋槽机械密封为研究对象,基于Laminar层流及Mixture多相流模型,开展了低温、高速等极端工况下密封间隙内流体的空化相变特性研究;以泄漏量、开启力与内部气相体积占比等性能参数为表征指标,分析了该类密封在液氮介质环境工况参数对两相流动特性和相态转变的影响规律。结果表明随着密封间隙增加将导致两相流在有限约束范围内的体积增大,较弱的动压效应导致内部压力产生较小变化进而使得空化相变能力减小;气相体积占比随着液膜温度的增加而增大,随着密封介质压力的增加而减小。开展了低温实验研究,并验证了仿真模型的正确性,理论与实验结果将有助于深入理解低温高速动静结合型机械密封两相流机理,对可重复高速涡轮泵的运行可靠性和稳定性提升具有重要的实践价值。
张国渊 , 黎旭康 , 赵伟刚 , 赵洋洋 , 王俊倩 . 低温高速动静结合型机械密封两相流仿真与实验[J]. 航空学报, 2023 , 44(23) : 628229 -628229 . DOI: 10.7527/S1000-6893.2022.28229
The non-contact mechanical seal of high-speed turbopump in the liquid rocket engine operating under harsh conditions such as low-temperature, high-speed, and high-pressure, is easy to produce gas-liquid two-phase flow. The mechanism of inducing two-phase flow and the effect of phase transition on seal performance are still unclear, so it is urgent to develop relevant theoretical models and perform experimental test. Based on Laminar flow and Mixture multiphase flow models, this research, taking a non-contact hydrodynamic spiral groove mechanical seal of high-speed turbopump as the object, studies the cavitation phase transition characteristics of fluid in the seal gap under low temperature high-speed harsh conditions. The main seal performance parameters, such as leakage, opening force and proportion of internal gas phase volume, are obtained, and the influence of the working parameters on the two-phase flow characteristics and the phase transition process with the low temperature liquid nitrogen as the sealed fluid is analyzed. The results show that with the increase of the film thickness, the volume of the fluid in the sealing gap increases, and the dynamic pressure effect decreases,which leads to a small change in the internal pressure, and therefore, reduces the cavitation phase transition possibility. With the increase of the film temperature, the proportion of internal gas phase volume increases, and decreases with the increase of inlet pressure. A series of low-temperature experimental tests are carried out, and the correctness of the theoretical models is verified. The study will help to understand the two-phase flow mechanism of low-temperature high-speed non-contact mechanical seal, which has important engineering value for improving the operational reliability and stability of reusable high-speed turbopump.
1 | MUSTAFI S, DELEE C, FRANCIS J, et al. Cryogenic propulsion for the Titan Orbiter Polar Surveyor (TOPS) mission[J]. Cryogenics, 2016, 74: 81-87. |
2 | PALERM S, BONHOMME C, GUELOU Y, et al. The future of cryogenic propulsion[J]. Acta Astronautica, 2015,112: 166-173. |
3 | 李东, 李平岐. 长征五号火箭技术突破与中国运载火箭未来发展[J]. 航空学报, 2022, 43(10): 527269. |
LI D, LI P Q. Technological breakthroughs of LM-5 and future developments of China's launch vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527269 (in Chinese). | |
4 | 张国渊,党佳琦,赵伟刚,等. 高速水润滑机械密封的两相流热振动现象[J]. 航空学报, 2019, 40(3): 422532. |
ZHANG G Y, DANG J Q, ZHAO W G, et al. Two-phase flow thermal vibration phenomenon of high-speed water-lubricated mechanical seal[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3): 422532 (in Chinese). | |
5 | ANDRéS L S. Rotordynamic force coefficients of bubbly mixture annular pressure seals[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(2): 022503. |
6 | HUGHES W F, CHAO N H. Phase change in liquid face seals II—Isothermal and adiabatic bounds with real fluids[J]. Journal of Lubrication Technology. 1980, 102(3): 350-357. |
7 | ARAUZ G L, ANDRE′S L SAN. Analysis of two-phase flow in cryogenic damper seals—Part I: theoretical model[J]. Journal of Tribology Transactions of the ASME, 1998, 120(2): 221-227. |
8 | ZHANG G Y, ZHAO Y Y, ZHAO W G, et al. An experimental study on the cryogenic face seal at different inlet pressures[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2020, 234(9): 1470-1481. |
9 | 陈国忠. 气液混合两相流的动静压密封性能分析[D]. 西安:西安电子科技大学, 2018. |
CHEN G Z. A coupling static-dynamic mechanical seal model with considering the gas-liquid phase flow conditions[D]. Xi'an: Xidian University, 2018 (in Chinese). | |
10 | 陈汇龙, 王彬, 任坤腾, 等. 空化热效应对上游泵送机械密封润滑性能的影响[J]. 化工学报, 2016, 67(10): 4334-4343. |
CHEN H L, WANG B, REN K T, et al. Influence of cavitation thermal effect on lubrication properties of upstream pumping mechanical seal[J]. CIESC Journal, 2016, 67(10): 4334-4343 (in Chinese). | |
11 | 丁雪兴, 刘红, 王世鹏, 等. 柱面螺旋槽气液两相流体动压密封稳态性能研究[J]. 润滑与密封, 2022, 47(2): 22-29. |
DING X X, LIU H, WANG S P, et al. Study on steady state performance of gas-liquid two-phase fluid dynamic pressure seal in spiral groove of cylinder[J]. Lubrication Engineering, 2022, 47(2): 22-29 (in Chinese). | |
12 | 曹恒超, 郝木明, 李振涛, 等. 相变对螺旋槽液膜密封性能的影响[J]. 化工学报, 2017, 68(8): 3190-3201. |
CAO H C, HAO M M, LI Z T, et al. Effect of phase change on performance of spiral groove liquid film seals[J]. CIESC Journal, 2017, 68(8): 3190-3201 (in Chinese). | |
13 | 郝木明, 庄媛, 章大海, 等. 考虑空化效应的螺旋槽液膜密封特性数值研究[J]. 中国石油大学学报(自然科学版), 2015, 39(3): 132-137. |
HAO M M, ZHUANG Y, ZHANG D H, et al. Numerical study on sealing performance of spiral groove liquid film seal considering effects of cavitation [J]. Journal of China University of Petroleum (Edition of Natural Science), 2015, 39 (3): 132-137 (in Chinese). | |
14 | 李振涛, 王赟磊, 郝木明, 等. 下游泵送螺旋槽密封空化试验及性能分析[J]. 摩擦学学报, 2017, 37(6): 743-755. |
LI Z T, WANG Y L, HAO M M, et al. Cavitation experiment and performance analysis of downstream pumping spiral groove seals[J]. Tribology,2017, 37 (6): 743-755 (in Chinese). | |
15 | BRUNETIèRE N. A general model for liquid and gas lubrication, including cavitation[J]. Journal of Tribology, 2018, 140(2): 021702. |
16 | SONG Z X, GUO F, LIU Y, et al. Inertia effect on the load capacity of large water-lubricated thrust bearing[J]. Tribology Transactions, 2018, 61(1): 111-121. |
17 | 王衍, 胡琼, 肖业祥, 等. 超高速干气密封扰流效应及抑扰机制[J]. 航空学报, 2019, 40(10): 123072. |
WANG Y, HU Q, XIAO Y X, et al. Turbulence effect and suppression mechanism of dry gas seal at ultra-high speeds[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10): 123072 (in Chinese). | |
18 | LI Z, LIU F, YUE J, et al. Effects of operating conditions on cavitation induction of spiral groove liquid film seal (SG-LFS)[J]. Industrial Lubrication and Tribology, 2020, 72(10): 1267-1275. |
19 | 陈懋章. 粘性流体动力学基础[M]. 北京:高等教育出版社, 2002. |
CHEN M Z. Fundamentals of viscous fluid dynamics[M]. Beijing: Higher Education Press, 2002 (in Chinese). | |
20 | ZHANG G Y, YAN X T, ZHANG Y, et al. Study on the water-lubricated high-speed non-contact mechanical face seal supported by a disc spring[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(7): 351. |
21 | NIST Standard Reference Database 23: Fluid Thermodynamic and Transport Properties Database (REFPROP): Version 9.0: NIST REFPROP 9.0 [S]. 2010. |
22 | 曹恒超, 郝木明, 杨文静, 等. 双列螺旋槽液膜密封相变现象及性能[J]. 化工学报, 2018, 69(5): 2110-2119. |
CAO H C, HAO M M, YANG W J, et al. Phase change phenomenon and properties of double spiral groove liquid film seals[J]. CIESC Journal, 2018, 69(5): 2110-2119 (in Chinese). | |
23 | 汪艳红. 基于蝙蝠翼翅的液膜密封槽型设计及性能研究[D]. 东营:中国石油大学(华东), 2019: 35-48. |
WANG Y H. Groove design and performance study of liquid film seal groove based on bat wings[D]. Dongying: China University of Petroleum (Huadong), 2019:35-48 (in Chinese). |
/
〈 |
|
〉 |