流体力学与飞行力学

一种宽速域乘波三角翼气动布局设计

  • 陈树生 ,
  • 张兆康 ,
  • 李金平 ,
  • 冯聪 ,
  • 高正红
展开
  • 1.西北工业大学 航空学院,西安 710072
    2.空军工程大学 航空动力系统与等离子体技术全国重点实验室,西安 710038
.E-mail: lijinping@buaa.edu.cn

收稿日期: 2022-12-29

  修回日期: 2023-01-17

  录用日期: 2023-02-08

  网络出版日期: 2023-02-10

基金资助

中国科协青年人才托举工程(2022QNRC001)

Wide-speed aerodynamic layout adopting waverider-delta wing

  • Shusheng CHEN ,
  • Zhaokang ZHANG ,
  • Jinping LI ,
  • Cong FENG ,
  • Zhenghong GAO
Expand
  • 1.School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China
    2.National Key Lab of Aerospace Power System and Plasma Technology,Air Force Engineering University,Xi’an 710038,China

Received date: 2022-12-29

  Revised date: 2023-01-17

  Accepted date: 2023-02-08

  Online published: 2023-02-10

Supported by

Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)

摘要

针对宽速域高超声速飞行器亚/跨/超/高超声速气动性能难以兼顾的问题,发展出一种融合乘波前体和大后掠三角翼的宽速域高超声速气动布局。乘波前体设计基于锥导乘波理论,设计马赫数为Ma=5;小展弦比大后掠机翼采用基于代理模型优化设计的宽速域翼型。数值模拟结果表明:亚声速状态下,该布局能够在大迎角飞行时利用涡升力改善气动性能,升阻比可以维持在8以上;超声速下该宽速域气动布局的三角翼双“S”构型下表面使气动布局尾缘附近获得额外加载,高超声速下乘波体前缘的激波特性提升了气动布局的升阻性能,超/高超声速速域内升阻比不低于4.5,巡航性能良好。此外,对该宽速域乘波三角翼气动布局的纵向静稳定性进行了分析,该气动布局整体气动中心位置靠后。

本文引用格式

陈树生 , 张兆康 , 李金平 , 冯聪 , 高正红 . 一种宽速域乘波三角翼气动布局设计[J]. 航空学报, 2023 , 44(23) : 128441 -128441 . DOI: 10.7527/S1000-6893.2023.28441

Abstract

To overcome the difficulty in inclusive consideration of the subsonic/transonic/supersonic/hypersonic aerodynamic performance of hypersonic vehicles in wide-speed range, we propose a wide-speed-range hypersonic aerodynamic configuration with a waverider forebody and a large swept delta wing. The design of the waverider forebody is based on the conical flow theory. The design Mach number is 5. The wide-speed range airfoil based on the surrogate model optimization design is arranged on a large swept wing with a small aspect ratio. The result shows that in subsonic flight, the configuration can improve aerodynamic performance using vortex lift at high angles of attack, with the lift-drag ratio maintained above 8. In supersonic flight, the double “S” shaped lower surface of the delta wing enables additional loading near the trailing edge of the aerodynamic configuration. In hypersonic flight, the shock wave characteristics at the leading edge of the waverider improve the lift-drag performance. The lift-drag ratio in the supersonic/hypersonic speed range is no smaller than 4.5 with good cruise performance. In addition, the longitudinal static stability in the wide-speed range is analyzed, showing that the aerodynamic center of the aerodynamic configuration is near the tailing edge.

参考文献

1 NONWEILER T R F. Aerodynamic problems of manned space vehicles[J]. The Journal of the Royal Aeronautical Society195963(585): 521-528.
2 JONES J G, MOORE K C, PIKE J, et al. A method for designing lifting configurations for high supersonic speeds, using axisymmetric flow fields[J]. Ingenieur-Archiv196837(1): 56-72.
3 王晓燕. 基于三维前缘线的乘波体设计方法研究[D]. 长沙: 国防科技大学, 2018.
  WANG X Y. Research on design method of waverider based on three-dimensional leading edge line[D].Changsha: National University of Defense Technology, 2018 (in Chinese).
4 段焰辉, 范召林, 吴文华. 定后掠角密切锥乘波体的生成和设计方法[J]. 航空学报201637(10): 3023-3034.
  DUAN Y H, FAN Z L, WU W H. Generation and design method of compact cone waverider with fixed sweep angle[J]. Acta Aeronautica et Astronautica Sinica201637(10): 3023-3034 (in Chinese).
5 HE X, RASMUSSEN M L. Computational analysis of off-design waveriders[J]. Journal of Aircraft199431(2): 345-353.
6 THSTROHMEYER E, NICKEL H, RADESPIEL R. Aerodynamic off-design behavior of integrated waveriders from take-off up to hypersonic flight[C]∥International Aerospace Planes and Hypersonics Technologies. Reston: AIAA, 1995: 6091.
7 SHI Y J, TSAI B J, MILES J, et al. Cone-derived waverider flowfield simulation including turbulence and off-design conditions[C]∥12th Applied Aerodynamics Conference. Reston: AIAA, 1994: 1822.
8 STARKEY R P, LEWIS M J. Analytical off-design lift-to-drag-ratio analysis for hypersonic waveriders[J]. Journal of Spacecraft and Rockets200037(5): 684-691.
9 LI S B, LUO S B, HUANG W, et al. Influence of the connection section on the aerodynamic performance of the tandem waverider in a wide-speed range[J]. Aerospace Science and Technology201330(1): 50-65.
10 LI S B, HUANG W, WANG Z G, et al. Design and aerodynamic investigation of a parallel vehicle on a wide-speed range[J]. Science China Information Sciences201457(12): 1-10.
11 LI S B, WANG Z G, HUANG W, et al. Design and investigation on variable Mach number waverider for a wide-speed range[J]. Aerospace Science and Technology201876: 291-302.
12 王发民, 丁海河, 雷麦芳. 乘波布局飞行器宽速域气动特性与研究[J]. 中国科学(E辑: 技术科学)200939(11): 1828-1835.
  WANG F M, DING H H, LEI M F. Aerodynamic characteristics and research of waverider aircraft in wide speed range[J]. Scientia Sinica (Technologica)200939(11): 1828-1835 (in Chinese).
13 RODI P. Geometrical relationships for osculating cones and osculating flowfield waveriders[C]∥Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011: AIAA2011-1188.
14 RODI P. Vortex lift waverider configurations[C]∥Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012: AIAA2012-1238.
15 刘传振, 刘强, 白鹏, 等. 涡波效应宽速域气动外形设计[J]. 航空学报201839(7): 121824.
  LIU C Z, LIU Q, BAI P, et al. Aerodynamic shape design of vortex wave effect in wide speed range[J]. Acta Aeronautica et Astronautica Sinica201839(7): 121824 (in Chinese).
16 刘传振, 白鹏, 陈冰雁, 等. 定平面形状乘波体及设计变量影响分析[J]. 宇航学报201738(5): 451-458.
  LIU C Z, BAI P, CHEN B Y, et al. Analysis of the influence of fixed plane shape waverider and design variables[J]. Journal of Astronautics201738(5): 451-458 (in Chinese).
17 ZHAO Z T, HUANG W, YAN B B, et al. Design and high speed aerodynamic performance analysis of vortex lift waverider with a wide-speed range[J]. Acta Astronautica2018151: 848-863.
18 谢赞, 周灿灿, 赵振涛, 等. 宽速域飞行器发展及研究现状综述[J]. 空天技术2022(4): 28-39, 86.
  XIE Z, ZHOU C C, ZHAO Z T, et al. Overview of development and research status of wide-speed aircraft[J]. Aerospace Technology2022(4): 28-39, 86 (in Chinese).
19 张阳, 韩忠华, 周正, 等. 面向高超声速飞行器的宽速域翼型优化设计[J]. 空气动力学学报202139(6): 111-127.
  ZHANG Y, HAN Z H, ZHOU Z, et al. Optimal design of airfoil for hypersonic vehicle in wide speed range[J]. Acta Aerodynamica Sinica202139(6): 111-127 (in Chinese).
20 孙祥程, 韩忠华, 柳斐, 等. 高超声速飞行器宽速域翼型/机翼设计与分析[J]. 航空学报201839(6): 121737.
  SUN X C, HAN Z H, LIU F, et al. Design and analysis of airfoil/wing of hypersonic vehicle in wide speed range[J]. Acta Aeronautica et Astronautica Sinica201839(6): 121737 (in Chinese).
21 FENG C, CHEN S S, YUAN W, et al. A wide-speed-range aerodynamic configuration by adopting wave-riding-strake wing[J]. Acta Astronautica2023202: 442-452.
22 方孝健. 翼身融合造型方法研究与实现[D]. 武汉: 华中科技大学, 2015.
  FANG X J. Research and implementation of wing-body fusion modeling method[D].Wuhan: Huazhong University of Science and Technology, 2015 (in Chinese).
23 刘衍旭, 陈树生, 冯聪, 等. 高超声速滑翔飞行器锐边化气动隐身一体化设计[J]. 航空学报202344(16): 128093.
  LIU Yanxu, CHEN Shusheng, FENG Cong, et al. Sharp edge integrated aerodynamic-stealth design for hypersonic glide vehicle[J]. Acta Aeronautica et Astronautica Sinica202344(16): 128093 (in Chinese).
24 CHEN S S, CAI F J, XIANG X H, et al. A low-diffusion robust flux splitting scheme towards wide-ranging Mach number flows[J]. Chinese Journal of Aeronautics202134(5): 628-641.
25 CHEN S S, LI J P, LI Z, et al. Anti-dissipation pressure correction under low Mach numbers for Godunov-type schemes[J]. Journal of Computational Physics2022456: 111027.
文章导航

/