基于全驱系统理论的航天器姿轨预设性能控制
收稿日期: 2022-11-25
修回日期: 2022-12-07
录用日期: 2023-01-28
网络出版日期: 2023-02-10
基金资助
国家自然科学基金委基础科学中心项目(62188101);国家自然科学基金(61833009);黑龙江省头雁行动计划
Spacecraft attitude-orbit prescribed performance control based on fully actuated system approach
Received date: 2022-11-25
Revised date: 2022-12-07
Accepted date: 2023-01-28
Online published: 2023-02-10
Supported by
Science Center Program of National Natural Science Foundation of China(62188101);National Natural Science Foundation of China(61833009);Heilongjiang Touyan Innovation Team Program
针对航天器对空间目标近距离绕飞背景下的姿轨一体化控制任务,考虑惯量参数不确定性与轨道摄动的影响,提出一种基于全驱系统参数化方法与自适应神经网络的预设性能控制方法。基于Lie群SE(3)描述刚体航天器近距离绕飞空间目标的六自由度运动,建立精确且简洁的航天器姿轨一体化误差动力学模型;通过引入指数形式的预设性能函数,先验定量地约束航天器姿轨状态误差的动态和稳态过程;考虑到航天器相对运动模型的非线性特性,设计了基于全驱系统方法的反馈控制项,使闭环系统成为具有可配置特征结构的常线性系统,降低了后续控制器设计难度;进一步设计了包括自适应神经网络项的积分滑模控制器,以实现存在惯量不确定性和轨道摄动情况下的航天器高精度一体化控制;此外,利用改进粒子群算法进一步优化控制器参数,提高了控制器的工程应用性。数值模拟结果显示,在所提出的控制方法作用下,能够实现高精度姿轨一体绕飞,航天器状态轨迹始终处于预设性能包络内且控制输出无明显抖振,证明了所设计控制器的有效性和可应用性。
关键词: 全驱系统方法; Lie群SE(3); 航天器姿轨一体化控制; 预设性能控制; 改进粒子群优化
刘明 , 范睿超 , 邱实 , 曹喜滨 . 基于全驱系统理论的航天器姿轨预设性能控制[J]. 航空学报, 2024 , 45(1) : 628313 -628313 . DOI: 10.7527/S1000-6893.2023.28313
An attitude-orbit integrated controller with prescribed performance based on fully actuated system parameterization approach and adaptive neural network is proposed for close flying-around of the space target in the presence of inertia parameter uncertainty and orbit perturbation. The six degree of freedom motion of rigid spacecraft is derived under the framework of Lie group SE(3), and an accurate and concise attitude-orbit integrated error dynamic model is established. An exponential-form based performance function is introduced to perform prior and quantitative constraints on the dynamic and stable processes of attitude error and position error. Considering the nonlinear characteristics of the dynamic model, a feedback control term based on the fully actuated system approach is designed to obtain a constant linear closed-loop system with an arbitrarily assignable eigenstructure, thus reducing the difficulty of the subsequent controller design process. An adaptive neural network based integral sliding mode controller is further designed to compensate for the loss of control accuracy caused by inertia parameter uncertainty and orbit perturbation. In addition, to further enhance the engineering utility, an improved particle swarm optimization algorithm is developed to optimize the controller parameters. Numerical simulation results indicate that the high-precision attitude-orbit integrated flying-around is achieved without significant control chatter while satisfying the predesigned performance constraints, thus verifying the effectiveness and feasibility of the proposed controller.
1 | 夏鹏程, 罗建军, 王明明, 等. 空间双臂机器人抓捕非合作目标后的协调稳定控制[J]. 航空学报, 2022, 43(2): 325398. |
XIA P C, LUO J J, WANG M M, et al. Coordinated stabilization control for dual-arm space robot capturing a non-cooperative target[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 325398 (in Chinese). | |
2 | 刘将辉, 李海阳, 张政, 等. 相对失控翻滚目标悬停的自适应模糊滑模控制[J]. 航空学报, 2019, 40(5): 322430. |
LIU J H, LI H Y, ZHANG Z, et al. Adaptive fuzzy sliding mode control for body-fixed hovering over uncontrolled tumbling satellite[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 322430 (in Chinese). | |
3 | 段广仁. 飞行器控制的伪线性系统方法: 第一部分: 综述与问题[J]. 宇航学报, 2020, 41(6): 633-646. |
DUAN G R. Quasi-linear system approaches for flight vehicle control—Part 1: An overview and problems[J]. Journal of Astronautics, 2020, 41(6): 633-646 (in Chinese). | |
4 | 段广仁. 飞行器控制的伪线性系统方法: 第二部分: 方法与展望[J]. 宇航学报, 2020, 41(7): 839-849. |
DUAN G R. Quasi-linear system approaches for flight vehicle control—Part 2: Methods and prospects[J]. Journal of Astronautics, 2020, 41(7): 839-849 (in Chinese). | |
5 | DUAN G Q, LIU G P. Optimal control of fully-actuated systems for spacecraft rendezvous[C]∥2022 41st Chinese Control Conference. Piscataway: IEEE Press, 2022: 1690-1695. |
6 | XIAO F Z, CHEN L Q. Attitude control of spherical liquid-filled spacecraft based on high-order fully actuated system approaches[J]. Journal of Systems Science and Complexity, 2022, 35(2): 471-480. |
7 | LIU G Q, ZHANG K, LI B. Fully-actuated system approach based optimal attitude tracking control of rigid spacecraft with actuator saturation[J]. Journal of Systems Science and Complexity, 2022, 35(2): 688-702. |
8 | ZHAO Q, DUAN G R. Fully actuated system approach for 6DOF spacecraft control based on extended state observer[J]. Journal of Systems Science and Complexity, 2022, 35(2): 604-622. |
9 | BECHLIOULIS C P, ROVITHAKIS G A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance[J]. IEEE Transactions on Automatic Control, 2008, 53(9): 2090-2099. |
10 | WEI C S, CHEN Q F, LIU J, et al. An overview of prescribed performance control and its application to spacecraft attitude system[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2021, 235(4): 435-447. |
11 | 孙冲, 袁建平, 万文娅, 等. 自由翻滚故障卫星外包络抓捕及抓捕路径优化[J]. 航空学报, 2018, 39(11): 322203. |
SUN C, YUAN J P, WAN W Y, et al. Outside envelop grasping method and approaching trajectory optimization for tumbling malfunctional satellite capture[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11): 322203 (in Chinese). | |
12 | 殷泽阳, 罗建军, 魏才盛, 等. 非合作航天器姿态接管无辨识预设性能控制[J]. 航空学报, 2018, 39(11): 322022. |
YIN Z Y, LUO J J, WEI C S, et al. Estimation-free and prescribed performance control of attitude takeover for non-cooperative spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11): 322022 (in Chinese). | |
13 | 魏才盛, 罗建军, 殷泽阳. 航天器姿态预设性能控制方法综述[J]. 宇航学报, 2019, 40(10): 1167-1176. |
WEI C S, LUO J J, YIN Z Y. A review of prescribed performance control for spacecraft attitude[J]. Journal of Astronautics, 2019, 40(10): 1167-1176 (in Chinese). | |
14 | 马广富, 朱庆华, 王鹏宇, 等. 基于终端滑模的航天器自适应预设性能姿态跟踪控制[J]. 航空学报, 2018, 39(6): 321763. |
MA G F, ZHU Q H, WANG P Y, et al. Adaptive prescribed performance attitude tracking control for spacecraft via terminal sliding-mode technique[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6): 321763 (in Chinese). | |
15 | 张继. 基于二阶滑模和预设性能约束的航天器编队轨道控制[D]. 哈尔滨: 哈尔滨工业大学, 2019: 54-77. |
ZHANG J. Spacecraft formation orbit control based on second-order sliding mode and prescribed performance constraints[D]. Harbin: Harbin Institute of Technology, 2019: 54-77 (in Chinese). | |
16 | ZHANG C, MA G F, SUN Y C, et al. Observer-based prescribed performance attitude control for flexible spacecraft with actuator saturation[J]. ISA Transactions, 2019, 89: 84-95. |
17 | 党庆庆, 桂海潮, 徐明, 等. 无速度反馈的航天器姿轨耦合跟踪控制[J]. 航空学报, 2018, 39(S1): 722202. |
DANG Q Q, GUI H C, XU M, et al. Attitude and position tracking control for spacecraft without velocity measurement[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(S1): 722202 (in Chinese). | |
18 | DONG H L, YANG X B. Finite-time prescribed performance control for space circumnavigation mission with input constraints and measurement uncertainties[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 3209-3222. |
19 | FU J L, CHEN L, ZHANG D X, et al. Disturbance observer-based prescribed performance predictive control for spacecraft on-orbit inspection[J]. Journal of Guidance, Control, and Dynamics, 2022, 45(10): 1873-1889. |
20 | SHAO X D, HU Q L, SHI Y. Adaptive pose control for spacecraft proximity operations with prescribed performance under spatial motion constraints[J]. IEEE Transactions on Control Systems Technology, 2021, 29(4): 1405-1419. |
21 | BAGHERZADEH S, KARIMPOUR H, KESHMIRI M. Efficient numerical trends for nonlinear model predictive control of a rigid body spacecraft on SE(3)[C]∥2021 9th RSI International Conference on Robotics and Mechatronics. Piscataway: IEEE Press, 2021: 329-334. |
22 | 张剑桥, 叶东, 孙兆伟. SE(3)上姿轨耦合航天器高精度快速终端滑模控制[J]. 宇航学报, 2017, 38(2): 176-184. |
ZHANG J Q, YE D, SUN Z W. High-accuracy fast terminal sliding mode control for coupled spacecraft on SE(3)[J]. Journal of Astronautics, 2017, 38(2): 176-184 (in Chinese). | |
23 | 张剑桥. 航天器姿轨一体化建模与控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2020: 27-34. |
ZHANG J Q. Research on spacecraft integrated orbit-attitude modeling and control methods[D]. Harbin: Harbin Institute of Technology, 2020: 27-34 (in Chinese). | |
24 | 梅亚飞, 廖瑛, 龚轲杰, 等. SE(3)上航天器姿轨耦合固定时间容错控制[J]. 航空学报, 2021, 42(11): 525089. |
MEI Y F, LIAO Y, GONG K J, et al. Fixed-time fault-tolerant control for coupled spacecraft on SE(3)[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 525089 (in Chinese). | |
25 | AHMED J, COPPOLA V T, BERNSTEIN D S. Adaptive asymptotic tracking of spacecraft attitude motion with inertia matrix identification[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(5): 684-691. |
26 | 张景瑞, 张威泰, 曾祥远, 等. 考虑不确定性的航天器姿态滑模控制器设计[J]. 北京理工大学学报, 2011, 31(10): 1198-1202. |
ZHANG J R, ZHANG W T, ZENG X Y, et al. Robust controller design for the attitude control of spacecraft with uncertainty[J]. Transactions of Beijing Institute of Technology, 2011, 31(10): 1198-1202 (in Chinese). | |
27 | SUN L, ZHENG Z W. Disturbance-observer-based robust backstepping attitude stabilization of spacecraft under input saturation and measurement uncertainty[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 7994-8002. |
28 | 岳晓奎, 吕佰梁, 刘闯, 等. 基于神经网络干扰观测器的柔性航天器姿态稳定控制[J]. 上海航天(中英文), 2022, 39(4): 58-65. |
YUE X K, LYU B L, LIU C, et al. Neural network disturbance observer-based attitude control for flexible spacecrafts[J]. Aerospace Shanghai (Chinese & English), 2022, 39(4): 58-65 (in Chinese). | |
29 | 林晓冬, 张锐. 含模型不确定性和状态约束的航天器姿态鲁棒控制[J]. 宇航学报, 2022, 43(6): 781-789. |
LIN X D, ZHANG R. Robust attitude control for spacecraft with model uncertainty and state constraints[J]. Journal of Astronautics, 2022, 43(6): 781-789 (in Chinese). | |
30 | 程靖, 陈力. 双臂空间机器人捕获航天器后的镇定运动分块滑模自适应神经网络控制[J]. 中国机械工程, 2017, 28(12): 1427-1433. |
CHENG J, CHEN L. Partitioned sliding mode adaptive neural network control of calm movements of dual-arm space robot after capturing a spacecraft[J]. China Mechanical Engineering, 2017, 28(12): 1427-1433 (in Chinese). | |
31 | 王生亮, 刘根友. 一种非线性动态自适应惯性权重PSO算法[J]. 计算机仿真, 2021, 38(4): 249-253. |
WANG S L, LIU G Y. A nonlinear dynamic adaptive inertial weight particle swarm optimization[J]. Computer Simulation, 2021, 38(4): 249-253 (in Chinese). | |
32 | YANG Q H, TIAN J P, SI W. An improved particle swarm optimization based on difference equation analysis[J]. Journal of Difference Equations and Applications, 2017, 23(1/2): 135-152. |
/
〈 |
|
〉 |