固体力学与飞行器总体设计

波阵风中的弹性飞机动力学建模与仿真

  • 王立波 ,
  • 荆志伟 ,
  • 唐矗
展开
  • 1.航空工业第一飞机设计研究院,西安  710089
    2.西北工业大学 无人系统技术研究院,西安  710072
.E-mail: tc@nwpu.edu.cn

收稿日期: 2022-11-02

  修回日期: 2022-11-22

  录用日期: 2023-01-03

  网络出版日期: 2023-02-06

Modelling and simulation of flexible aircraft in blast wind

  • Libo WANG ,
  • Zhiwei JING ,
  • Chu TANG
Expand
  • 1.The First Aircraft Institute,Aviation Industry Corporation of China,Ltd. ,Xi’an  710089,China
    2.Unmanned System Research Institute,Northwestern Polytechnical University,Xi’an  710072,China
E-mail: tc@nwpu.edu.cn

Received date: 2022-11-02

  Revised date: 2022-11-22

  Accepted date: 2023-01-03

  Online published: 2023-02-06

摘要

爆炸产生的波阵风以超声速或声速传播,且携带了高能扰动能量,它会对飞机产生显著的扰动作用甚至破坏作用。本文阐述了爆炸波阵风的模型,定义了波阵风与飞机的作用方法。将波阵风对飞机的作用折算为下洗效应,采用亚声速偶极子格网法,推导了波阵风对飞机的非定常激励力计算公式,基于此建立了波阵风中的弹性飞机动力学模型,提出了波阵风中的弹性飞机动响应仿真流程。数值仿真结果表明:波阵风激励力计算方法有效,能满足工程实践需求;在质心处,弹性飞机与刚体飞机的动响应差异不大;在翼尖区域,由于气动弹性效应,弹性飞机与刚体飞机的动响应结果有显著差别;波阵风的激励能量主要集中于1 Hz以下,在构建弹性飞机动力学模型时可以忽略振动频率比较高的弹性模态。

本文引用格式

王立波 , 荆志伟 , 唐矗 . 波阵风中的弹性飞机动力学建模与仿真[J]. 航空学报, 2023 , 44(17) : 228214 -228214 . DOI: 10.7527/S1000-6893.2022.28214

Abstract

The blast wind generated by the explosion propagates at supersonic or sonic speed and carries high-energy disturbance energy, and can have a significant disturbance or even destructive effect on the aircraft. The model of the blast wind is described, and the method of action between the blast wind and the aircraft is defined. The effect of blast wind on aircraft is treated as the downwash effect, and the unsteady excitation force calculation formula for aircraft in the blast wind is derived by employing the subsonic doublet lattice method. A dynamics model of elastic aircraft in the blast wind is established, and the dynamic response simulation process for flexible aircraft in the blast wind is proposed. The numerical simulation results show that the calculation method of the excitation force due to the blast wind is effective and can meet the requirements of engineering practice. At the center of gravity, the dynamic response results of elastic aircraft and rigid aircraft have no obvious difference. In the wingtip region, the dynamic response results of elastic aircraft and rigid body aircraft show significant difference due to the aeroelastic effect. Since the excitation energy of the blast wind is mainly concentrated below 1 Hz, the elastic modes with relatively high vibration frequencies can be ignored in establishing dynamics model of the elastic aircraft.

参考文献

1 WALLS J H. In-flight structural response of the model A4D-1 aircraft to a nuclear explosion: WT-1433[R]. St.Louis: Douglas Aircraft Company, 1958.
2 WILLIAMS F L. In-flight participation of a B-52: WT-1328[R]. Chicago: Boeing Airplane Company, 1959.
3 WU Z, CAO Y, ISMAIL M. Gust loads on aircraft[J]. The Aeronautical Journal2019123(1266): 1216-1274.
4 杨超, 邱祈生, 周宜涛, 等. 飞机阵风响应减缓技术综述[J]. 航空学报202243(10): 527350.
  YANG C, QIU Q S, ZHOU Y T, et al. Review of aircraft gust alleviation technology[J]. Acta Aeronautica et Astronautica Sinica202243(10): 527350 (in Chinese).
5 MILLER G C, SCHLEI E J, ANDREWS C R. Blast and thermal effects on B-36 aircraft in flight: AD-338333 [R]. Montgometry: Wright Air Development Center, 1956.
6 LEE W N, MENTE L. NOVA-2: A digital computer program for analyzing nuclear overpressure effects on aircraft: AFWL-TR-75-262[R]. Albuquerque: Kirland Air Force Base, 1976.
7 ECKBLAD D M, FUNSTON N E. Simulated nuclear gust testing of major airplane structural components: DNA 4243F[R]. Chicago: Boeing Airplane Company, 1977.
8 O.A. 库兹涅佐夫. 飞机动载荷[M]. 唐长红, 张建叶, 刘天兴, 等, 译. 北京: 航空工业出版社, 2017: 76-79.
  КУЗНЕЦОВ О А. Aircraft dynamic loads[M]. TANG C H, ZHANG J Y, LIU T X, et al, translated. Beijing: Aviation Industry Press, 2017: 76-79 (in Chinese).
9 朱立海. 飞机在冲击波作用下飞机迎角、法向过载安全边界的确定[R]. 北京: 空军第一研究所, 1981.
  ZHU L H. The safety margin determination of angle of attack and normal load factor of the aircraft in the blast wave[R]. Beijing: Air Force The First Research Institute, 1981 (in Chinese).
10 中国飞行试验研究院. 军用飞机强度和刚度规范核武器效应使用说明 [S]. 西安: 中国飞行试验研究院, 1986: 19-21.
  Chinese Flight Test Establishment. Nuclear weapons effects usage instruction of the military airplane strength and rigidity specification [S]. Xi’an: Chinese Flight Test Establishment, 1986: 19-21 (in Chinese).
11 张森林. 在核爆炸冲击波环境中飞行飞机的结构动力响应分析[J]. 航空学报199213(9): 510-515.
  ZHANG S L. Analysis of structural dynamic response for aircraft operating in the environment of nuclear explosion shock waves[J]. Acta Aeronautica et Astronautica Sinica199213(9): 510-515 (in Chinese).
12 绪梅, 李笑天, 王良厚, 等. 核爆冲击波作用下结构的动力学响应[M]∥核动力工程.北京: 原子能出版社, 2002: 95-97.
  XU M, LI X T, WANG L H, et al. Dynamic response ofthe structure under nuclear blast[M]∥Nuclear power engineering. Beijing: Atomic Energy Press, 2002: 95-97 (in Chinese).
13 WANG C. Dynamic response analysis of a warship subjected to underwater explosion shock waves[J]. Journal of Ship Mechanics201014(12): 1405-1414.
14 DRISCHLER J A, DIEDERICH F. Lift and moment responses to penetration of sharp-edged traveling gusts, with application to penetration of weak blast waves: NACA TN 3956[R]. Washington, D.C.: NACA, 1957.
15 CHAO D C, LAN C E. Calculation of wing response to guests and blast waves with vortex lift effect: NASA-CR-172232[R]. Washington, D.C.: NASA, 1983.
16 温功碧, 孙忠恕. 在运动突风作用下亚声速机翼非定常气动力数值计算[J]. 空气动力学学报1981(1): 44-52.
  WEN G B, SUN Z S. The unsteady aerodynamic numerical calculation of subsonic wing under the effect of travelling gust[J]. Acta Aerodynamica Sinica1981(1): 44-52 (in Chinese).
17 温功碧, 孙忠恕. 运动突风作用下机翼-机身-尾翼亚音速非定常气动力数值计算[J]. 航空学报19812(3): 23-30.
  WEN G B, SUN Z S. Numerical computation of unsteady subsonic aerodynamic forces on wing-body-tail exposed to travelling gust[J]. Acta Aeronautica et Astronautica Sinica19812(3): 23-30 (in Chinese).
18 LEISHMAN J G. Unsteady aerodynamics of airfoils encountering traveling gusts and vortices[J]. Journal of Aircraft199734(6): 719-729.
19 荆志伟, 唐长红. 运动突风中的飞机动响应建模及仿真[J]. 飞行力学202139(3): 8-13.
  JING Z W, TANG C H. Dynamic response modeling and simulation of aircraft in the travelling gust[J]. Flight Dynamics202139(3): 8-13 (in Chinese).
20 JING Z W, TANG C H. Modeling technique of the air-craft unsteady aerodynamics due to the travelling gust[J]. International Journal of Plant Engineering and Management202227(2): 86-102.
21 VIVIAN H T, ANDREW L. Unsteady aerodynamics for advanced configurations. Part I. Application of the subsonic kernel function to nonplanar lifting surfaces: FDL-TDR-64-152[R]. Montgometry: Wright-Patterson Air Force Base, 1965.
22 LANDAHL M T. Kernel function for nonplanar oscillating surfaces in a subsonic flow[J]. AIAA Journal19675(5): 1045-1046.
23 TECHNOLOGYEDITOR Z. ZAERO theoretical manual[M]. Version 8.2. Scottsdale: ZONA Technology, 2008.
24 WU Z G, YANG C. Flight loads and dynamics of flexible air vehicles[J]. Chinese Journal of Aeronautics200417(1): 17-22.
25 王立波, 唐矗, 杨超. 大展弦比飞翼刚弹耦合运动稳定性分析[J]. 西北工业大学学报201735(6): 1096-1104.
  WANG L B, TANG C, YANG C. Dynamic stability analysis of a flying wing considering the rigid-elastic coupling effects[J]. Journal of Northwestern Polytechnical University201735(6): 1096-1104 (in Chinese).
26 TIFFANY S, KARPEL M. Aeroservoelastic modeling and applications using minimum-state approximations of the unsteady aerodynamics[C]∥ Proceedings of the 30th Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 1989.
27 吴志刚. 飞行器气动伺服弹性的建模、分析与综合研究[D]. 北京: 北京航空航天大学, 2004: 24-26.
  WU Z G. Studies on aeroservoelastic modeling, analysis and synthesis of flight vehicles [D]. Beijing: Beihang University, 2004: 24-26 (in Chinese).
文章导航

/