基于多紫外相机的旋流火焰三维锋面层析重建
收稿日期: 2022-11-29
修回日期: 2022-12-24
录用日期: 2023-01-10
网络出版日期: 2023-02-01
基金资助
国家自然科学基金(51976038);江苏省自然科学基金(BK20201279)
3D front tomographic reconstruction of swirl flame by ultraviolet multi-camera imaging
Received date: 2022-11-29
Revised date: 2022-12-24
Accepted date: 2023-01-10
Online published: 2023-02-01
Supported by
National Natural Science Foundation of China(51976038);Natural Science Foundation of Jiangsu Province(BK20201279)
旋流火焰锋面可表征火焰宏观结构和燃烧稳定性,其瞬态三维结构测量对旋流燃烧机理研究和旋流燃烧器优化设计具有重要意义。提出一种基于多紫外相机成像的测量方法,构建了基于多紫外相机阵列的化学发光层析成像(Computed Tomography of Chemiluminescence, CTC)系统,实现了低成本、高准确度的旋流火焰瞬态锋面化学发光信息获取;发展了基于预识别技术的联合代数重建算法(Simultaneous Algebraic Reconstruction Technique, SART),通过光线追踪识别零强度体素,从而减少计算量和重建伪影。开展了数值模拟研究,以验证重建算法的准确性和抗噪性。最后搭建了甲烷-空气预混旋流燃烧实验台,开展了基于多紫外相机的化学发光成像系统标定和低旋流火焰锋面特性实验研究。结果表明,旋流火焰锋面反投影重建精度达到0.97以上,同时计算量减小了59.6%;稳定燃烧工况下,低旋流火焰在喷嘴出口处扩张,锋面呈现涡旋状的碗形结构;随着当量比的增大,火焰推举高度略有上升,火焰体积逐渐增大,燃烧稳定性增强。
倪浩伟 , 刘国炎 , 周毅 , 张彪 , 柳伟杰 , 许传龙 . 基于多紫外相机的旋流火焰三维锋面层析重建[J]. 航空学报, 2023 , 44(18) : 128331 -128331 . DOI: 10.7527/S1000-6893.2022.28331
The front of swirl flame can be used to characterize the flame macrostructure and combustion stability, making its transient 3D structure measurement extremely important for research on the swirl combustion mechanism and swirl burner optimization. A measuring approach for the transient 3D front of swirl flame by ultraviolet multi-camera imaging is proposed. In order to acquire transient chemiluminescence information at a low cost with high precision, a Computed Tomography of Chemiluminescence (CTC) system based on ultraviolet multi-camera array is built. Additionally, the Simultaneous Algebraic Reconstruction Technique (SART) is improved using a pre-recognition method for non-intensity voxels identification by ray tracing, resulting in less computational load and reconstruction artifacts. Numerical simulation experiments are executed to confirm the accuracy and noise immunity of the reconstruction algorithm. A methane-air premixed swirl combustion experimental rig is built finally, and the calibration of the ultraviolet multi-camera imaging system and low-swirl flame front experiments are carried out. The results show that the accuracy of the inverse projection exceeds 0.97 while the calculation is reduced by 59.6%. The low swirl flame expands at the nozzle exit under stable combustion conditions and displays a vortex bowl-shaped structure. In addition, the flame pushing height rises slightly as the equivalent ratio grows, and the flame volume gradually increases as well, which enhances combustion stability.
1 | HUANG Y, YANG V. Dynamics and stability of lean-premixed swirl-stabilized combustion[J]. Progress in Energy and Combustion Science, 2009, 35(4): 293-364. |
2 | 李军, 栗智宇, 李志刚, 等. 燃烧室和涡轮相互作用下高压涡轮级气热性能研究进展[J]. 航空学报, 2021, 42(3): 024111. |
LI J, LI Z Y, LI Z G, et al. Aerothermal performance of high pressure turbine stage with combustor-turbine interactions: Review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 024111 (in Chinese). | |
3 | LIU W J, XUE R R, ZHANG L, et al. Nonlinear response of a premixed low-swirl flame to acoustic excitation with large amplitude[J]. Combustion and Flame, 2022, 235: 111733. |
4 | O’CONNOR J, ACHARYA V, LIEUWEN T. Transverse combustion instabilities: Acoustic, fluid mechanic, and flame processes[J]. Progress in Energy and Combustion Science, 2015, 49: 1-39. |
5 | 刘泽宇, 张弛, 韩啸, 等. 分层比对分开分层旋流预混火焰结构的影响[J]. 航空学报, 2018, 39(3): 121692. |
LIU Z Y, ZHANG C, HAN X, et al. Effects of stratification ratio on structure of separated stratified premixed swirl flame[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3): 121692 (in Chinese). | |
6 | WANG J H, ZHANG M, HUANG Z H, et al. Measurement of the instantaneous flame front structure of syngas turbulent premixed flames at high pressure[J]. Combustion and Flame, 2013, 160(11): 2434-2441. |
7 | KHEIRKHAH S, GüLDER ? L. Turbulent premixed combustion in V-shaped flames: Characteristics of flame front[J]. Physics of Fluids, 2013, 25(5): 055107. |
8 | HIRANO T. Generation of flame front turbulence[J]. Combustion Science and Technology, 2000, 158(1): 35-51. |
9 | TAAMALLAH S, SHANBHOGUE S J, GHONIEM A F. Turbulent flame stabilization modes in premixed swirl combustion: Physical mechanism and Karlovitz number-based criterion[J]. Combustion and Flame, 2016, 166: 19-33. |
10 | TIAN Y, ZENG X J, YANG S H, et al. Experimental study on the effect of equivalence ratio and injector position on flow structure and flame development in the scramjet combustor[J]. Aerospace Science and Technology, 2018, 82/83: 9-19. |
11 | WORTH N A, DAWSON J R. Cinematographic OH-PLIF measurements of two interacting turbulent premixed flames with and without acoustic forcing[J]. Combustion and Flame, 2012, 159(3): 1109-1126. |
12 | ALDéN M, BOOD J, LI Z S, et al. Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques[J]. Proceedings of the Combustion Institute, 2011, 33(1): 69-97. |
13 | HAN D, SATIJA A, GORE J P, et al. Experimental study of CO2 diluted, piloted, turbulent CH4/air premixed flames using high-repetition-rate OH PLIF[J]. Combustion and Flame, 2018, 193: 145-156. |
14 | NYGREN J, HULT J, RICHTER M, et al. Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine[J]. Proceedings of the Combustion Institute, 2002, 29(1): 679-685. |
15 | MILLER V A, TROUTMAN V A, HANSON R K. Near-kHz 3D tracer-based LIF imaging of a co-flow jet using toluene[J]. Measurement Science and Technology, 2014, 25(7): 075403. |
16 | XU W J, CARTER C D, HAMMACK S, et al. Analysis of 3D combustion measurements using CH-based tomographic VLIF (volumetric laser induced fluorescence)[J]. Combustion and Flame, 2017, 182: 179-189. |
17 | MA L, LEI Q C, IKEDA J, et al. Single-shot 3D flame diagnostic based on volumetric laser induced fluorescence (VLIF)[J]. Proceedings of the Combustion Institute, 2017, 36(3): 4575-4583. |
18 | ANIKIN N B, SUNTZ R, BOCKHORN H. Tomographic reconstruction of 2D-OH?-chemiluminescence distributions in turbulent diffusion flames[J]. Applied Physics B: Lasers and Optics, 2012, 107(3): 591-602. |
19 | GOVENDER D, LIU H C, PENG F, et al. Tomographic reconstruction of an azimuthally forced flame in an annular chamber[J]. Proceedings of the Combustion Institute, 2023,39(1):1367-1375. |
20 | GRAUER S J, MOHRI K, YU T, et al. Volumetric emission tomography for combustion processes[J]. Progress in Energy and Combustion Science, 2023, 94: 101024. |
21 | MOHRI K, G?RS S, SCH?LER J, et al. Instantaneous 3D imaging of highly turbulent flames using computed tomography of chemiluminescence[J]. Applied Optics, 2017, 56(26): 7385-7395. |
22 | KANG M W, LI X S, MA L. Three-dimensional flame measurements using fiber-based endoscopes[J]. Proceedings of the Combustion Institute, 2015, 35(3): 3821-3828. |
23 | HUANG J Q, LIU H C, CAI W W. Online in situ prediction of 3-D flame evolution from its history 2-D projections via deep learning[J]. Journal of Fluid Mechanics, 2019, 875. |
24 | KOJIMA J, IKEDA Y, NAKAJIMA T. Basic aspects of OH(A), CH(A), and C2(d) chemiluminescence in the reaction zone of laminar methane-air premixed flames[J]. Combustion and Flame, 2005, 140(1/2): 34-45. |
25 | HARDALUPAS Y, ORAIN M. Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame[J]. Combustion and Flame, 2004, 139(3): 188-207. |
26 | GORDON R, BENDER R, HERMAN G T. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography[J]. Journal of Theoretical Biology, 1970, 29(3): 471-481. |
27 | RAYMUND T D, AUSTEN J R, FRANKE S J, et al. Application of computerized tomography to the investigation of ionospheric structures[J]. Radio Science, 1990, 25(5): 771-789. |
28 | ANDERSEN A H, KAK A C. Simultaneous algebraic reconstruction technique (SART): A superior implementation of the ART algorithm[J]. Ultrasonic Imaging, 1984, 6(1): 81-94. |
29 | JOHNSON M R, LITTLEJOHN D, NAZEER W A, et al. A comparison of the flowfields and emissions of high-swirl injectors and low-swirl injectors for lean premixed gas turbines[J]. Proceedings of the Combustion Institute, 2005, 30(2): 2867-2874. |
30 | ZHANG Z Y. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334. |
31 | WANG H Y, SHI Y F, ZHU X J, et al. 3-D reconstruction of bubble flow field based on the method of multivision by rough-precise location algebraic reconstruction technique[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 102811. |
/
〈 |
|
〉 |