航空发动机非定常流固热声耦合专栏

基于数据同化的试验数据驱动的叶栅流场预测

  • 刘锬韬 ,
  • 李瑞宇 ,
  • 高丽敏 ,
  • 赵磊
展开
  • 1.西北工业大学 动力与能源学院,西安 710072
    2.西北工业大学 翼型、叶栅空气动力学国家级重点实验室,西安 710072
    3.西安交通大学 航天航空学院,西安 710049
.E-mail: gaolm@nwpu.edu.cn

收稿日期: 2022-10-31

  修回日期: 2022-11-21

  录用日期: 2023-01-19

  网络出版日期: 2023-02-01

基金资助

国家自然科学基金(92152301)

Experimental data driven cascade flow field prediction based on data assimilation

  • Tantao LIU ,
  • Ruiyu LI ,
  • Limin GAO ,
  • Lei ZHAO
Expand
  • 1.School of Power and Energy,Northwestern Polytechnical University,Xi’an 710072,China
    2.National Key Laboratory of Science and Technology on Aerodynamic Design and Research,Northwestern Polytechnical University,Xi’an 710072,China
    3.School of Aerospace Engineering,Xi’an Jiaotong University,Xi’an 710049,China
E-mail: gaolm@nwpu.edu.cn

Received date: 2022-10-31

  Revised date: 2022-11-21

  Accepted date: 2023-01-19

  Online published: 2023-02-01

Supported by

National Natural Science Foundation of China(92152301)

摘要

为了更精确地预测压气机叶栅流场,发展了一套基于两步集合卡尔曼滤波数据同化方法的试验数据驱动的流场预测框架。首先使用测试函数校验了集合卡尔曼滤波算法的准确性,并探讨了各超参数的选取准则,分别使用S-A和SST湍流模型对MAN GHH叶栅在设计马赫数不同攻角工况下流场进行了试验数据驱动的流场预测,预测流场与试验测量结果高度相符。结果表明:相比原始参数的预测结果,数据同化校正后的流场与试验测量结果的偏差减小了将近70%;对于多数工况校正后流场叶片吸力面尾缘分离泡尺寸明显减小,分离起始点延迟,2种湍流模型校正流场的来流边界条件、流场物理量分布具有较高的一致性,表明试验数据驱动的流场对湍流模型的依赖性较低。

本文引用格式

刘锬韬 , 李瑞宇 , 高丽敏 , 赵磊 . 基于数据同化的试验数据驱动的叶栅流场预测[J]. 航空学报, 2023 , 44(14) : 628201 -628201 . DOI: 10.7527/S1000-6893.2023.28201

Abstract

To predict the cascade flow field more accurately, an experimental data driven prediction framework based on data assimilation with a two-step ensemble Kalman filter method was developed. The ensemble Kalman filtering algorithm was first verified by a test function and the selection criteria of hyperparameters were then discussed. The S-A and SST turbulence models were applied on the MAN GHH cascade under the design Mach number and different angles of attack to perform the experimental data driven flow field prediction, which shows that the predicted flow fields are highly consistent with the experimental measurement. The results indicate that compared with the predicted results under the original parameters, the errors between the flow field corrected by data assimilation and the experimental measurement results are reduced by nearly 70%; for most working conditions, the sizes of separation bubbles at the suction surface of the blade tail shrink obviously and the separation starting points move to downstream. The corrected coming boundary conditions and the physical quantities in the corrected flow field predicted by the two turbulence models are almost the same, indicating that the flow fields driven by the experimental data are nearly independent of turbulence models.

参考文献

1 ZAKI T A, WISSINK J G, RODI W, et al. Direct numerical simulations of transition in a compressor cascade: The influence of free-stream turbulence[J]. Journal of Fluid Mechanics2010665: 57-98.
2 LI Z, JU Y P, ZHANG C H. Parallel large eddy simulations of transitional flow in a compressor cascade with endwalls[J]. Physics of Fluids201931(11): 115104.
3 LI Z, JU Y P, ZHANG C H. Parallel large-eddy simulation of subsonic and transonic flows with transition in compressor cascade[J]. Journal of Propulsion and Power201935(6): 1163-1174.
4 WILCOX D C.Turbulence modeling for CFD [M].3rd ed. La Ca?ada: DCW Industries, Incorporated, 2006.
5 DURAISAMY K, IACCARINO G, XIAO H. Turbulence modeling in the age of data[J]. Annual Review of Fluid Mechanics201951: 357-377.
6 XIAO H, CINNELLA P. Quantification of model uncertainty in RANS simulations:A review[J]. Progress in Aerospace Sciences2019108: 1-31.
7 何创新, 邓志文, 刘应征. 湍流数据同化技术及应用[J]. 航空学报202142(4): 524704.
  HE C X, DENG Z W, LIU Y Z. Turbulent flow data assimilation and its applications[J]. Acta Aeronautica et Astronautica Sinica202142(4): 524704 (in Chinese).
8 NAVON I M. Data assimilation for numerical weather prediction:A review[M]∥Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications. Berlin, Heidelberg: Springer, 2009: 21-65.
9 WANG G Y, PAN Y L. Phase-resolved ocean wave forecast with ensemble-based data assimilation[J]. Journal of Fluid Mechanics2021918: A19.
10 马建文, 秦思娴. 数据同化算法研究现状综述[J]. 地球科学进展201227(7): 747-757.
  MA J W, QIN S X. Recent advances and development of data assimilation algorithms[J]. Advances in Earth Science201227(7): 747-757 (in Chinese).
11 KATO H, OBAYASHI S. Data assimilation for turbulent flows[C]∥16th AIAA Non-Deterministic Approaches Conference. Reston: AIAA, 2014.
12 FOURES D, DOVETTA N, SIPP D, et al. A data-assimilation method for Reynolds-averaged Navier-Stokes-driven meanflow reconstruction[J]. Journal of Fluid Mechanics2014759: 404-431.
13 HE C X, WANG P, LIU Y Z. Data assimilation for turbulent mean flow and scalar fields with anisotropic formulation[J].Experiments in Fluids202162(5):117.
14 张亦知, 程诚, 范钇彤, 等. 基于物理知识约束的数据驱动式湍流模型修正及槽道湍流计算验证[J]. 航空学报202041(3): 123282.
  ZHANG Y Z, CHENG C, FAN Y T, et al. Data-driven correction of turbulence model with physics knowledge constrains in channel flow[J]. Acta Aeronautica et Astronautica Sinica202041(3): 123282 (in Chinese).
15 SINGH A P, DURAISAMY K. Using field inversion to quantify functional errors in turbulence closures[J]. Physics of Fluids201628(4): 045110.
16 HE X, ZHAO F Z, VAHDATI M. A turbo-oriented data-driven modification to the Spalart-Allmaras turbulence model[J]. Journal of Turbomachinery2022144(12): 121007.
17 王丹华, 陆利蓬, 李秋实. 基于湍流输运特性对S-A模型在压气机角区流动模拟中的改进研究[J]. 航空动力学报201025(1): 80-86.
  WANG D H, LU L P, LI Q S. Improvement on S-A model for compressor flow based on turbulence transport nature[J]. Journal of Aerospace Power201025(1): 80-86 (in Chinese).
18 王丹华, 马威, 陆利蓬. S-A模型在分离流动模拟中的改进[J]. 推进技术200829(5): 539-544.
  WANG D H, MA W, LU L P. Modification of S-A turbulence model on separation flows[J]. Journal of Propulsion Technology200829(5): 539-544 (in Chinese).
19 马力, 孙槿静, 陆利蓬. 引入压力梯度的针对角区分离流动的Spalart-Allmaras模型的改进[J]. 航空动力学报201631(10): 2405-2414.
  MA L, SUN J J, LU L P. Modification of Spalart-Allmaras model with pressure gradient aiming for corner separation flow[J]. Journal of Aerospace Power201631(10): 2405-2414 (in Chinese).
20 EVENSEN G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics[J]. Journal of Geophysical Research199499(C5): 10143-10162.
21 BISHOP C H, ETHERTON B J, MAJUMDAR S J. Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects[J]. Monthly Weather Review2001129(3): 420-436.
22 ZHANG X L, MICHELéN-STR?FER C, XIAO H. Regularized ensemble Kalman methods for inverse problems[J]. Journal of Computational Physics2020416: 109517.
23 ZHANG X L, XIAO H, HE G W. Assessment of regularized ensemble Kalman method for inversion of turbulence quantity fields[J]. AIAA Journal202260(1): 3-13.
24 DENG Z W, HE C X, WEN X, et al. Recovering turbulent flow field from local quantity measurement: Turbulence modeling using ensemble-Kalman-filter-based data assimilation[J]. Journal of Visualization201821(6): 1043?1063.
25 房培勋, 何创新, 徐嗣华, 等. 基于实验数据同化的湍流模型常数标定:含滤网蒸汽阀门通流特性数值预测[J]. 空气动力学学报202139(2): 12-22.
  FANG P X, HE C X, XU S H, et al. Calibration of turbulence model constants using measurement data assimilation: Prediction of steam valve flow characteristics with filter[J]. Acta Aerodynamica Sinica202139(2): 12-22 (in Chinese).
26 KATO H, ISHIKO K, YOSHIZAWA A. Optimization of parameter values in the turbulence model aided by data assimilation[J]. AIAA Journal201654(5): 1512-1523.
27 KEANE A, FORRESTER A, SOBESTER A. Engineering design via surrogate modelling:A practical guide[M]. Reston: AIAA, 2008.
28 STEINERT W, EISENBERG B, STARKEN H. Design and testing of a controlled diffusion airfoil cascade for industrial axial flow compressor application[J]. Journal of Turbomachinery1991113(4): 583-590.
29 SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]∥ 30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992.
30 MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal199432(8): 1598-1605.
31 蔡明, 高丽敏, 刘哲, 等. 不同条件下平面叶栅风洞流场品质的实验研究[J]. 推进技术202142(5): 1162-1170.
  CAI M, GAO L M, LIU Z, et al. Experimental study on flow field quality of linear cascade wind tunnel under different conditions[J]. Journal of Propulsion Technology202142(5): 1162-1170 (in Chinese).
32 蔡明, 高丽敏, 刘哲, 等. 高负荷扩压平面叶栅进口均匀性分析及改进[J]. 工程热物理学报202142(12): 3164-3169.
  CAI M, GAO L M, LIU Z, et al. Analysis and modification on inflow uniformity of highly-loaded compressor linear cascade[J]. Journal of Engineering Thermophysics202142(12): 3164-3169 (in Chinese).
文章导航

/