电子电气工程与控制

校正源存在下抑制部分同步时钟偏差和传感器位置误差的时差定位闭式解

  • 王鼎 ,
  • 高卫港 ,
  • 聂福全 ,
  • 吴志东
展开
  • 1.中国人民解放军战略支援部队信息工程大学 信息系统工程学院,郑州 450001
    2.卫华集团有限公司,长垣 453400
    3.国家数字交换系统工程技术研究中心,郑州 450002
.E-mail: 1966531083@qq.com

收稿日期: 2022-09-27

  修回日期: 2022-11-08

  录用日期: 2022-12-18

  网络出版日期: 2023-01-18

基金资助

国家自然科学基金(62171469);河南省科技攻关项目(192102210092);战略支援部队信息工程大学科研发展基金项目(F4108)

摘要

同步时钟偏差和传感器位置先验观测误差是影响时差(TDOA)定位精度的重要因素。针对部分同步模型,提出一种协同校正源观测信息的TDOA定位新方法,旨在显著抑制两类模型误差影响。针对TDOA观测模型的强非线性特征,提出一种两阶段(称为阶段A和阶段B)闭式定位方法,可实现对各类参数解耦合估计,并且避免迭代运算。阶段A仅利用校正源观测,基于线性消元思想,利用贝叶斯(Bayesian)估计和加权最小二乘(WLS)估计,分步获得传感器位置和同步时钟偏差闭式解。阶段B则联合目标源观测与阶段A估计结果,推导新的伪线性观测方程,并利用WLS估计和拉格朗日乘子法获得目标源位置闭式解,随后基于Bayesian估计得到更精确的同步时钟偏差和传感器位置联合闭式解。此外,推导了相关克拉美罗界(CRB),并通过数学分析,证明新方法具有渐近统计最优性。仿真实验验证了文中理论分析有效性和新方法优越性。

本文引用格式

王鼎 , 高卫港 , 聂福全 , 吴志东 . 校正源存在下抑制部分同步时钟偏差和传感器位置误差的时差定位闭式解[J]. 航空学报, 2023 , 44(16) : 328057 -328057 . DOI: 10.7527/S1000-6893.2022.28057

参考文献

1 DARVISHI H, SEBT M A. Adaptive hybrid method for low-angle target tracking in multipath[J]. IET Radar, Sonar & Navigation, 201812(9): 931-937.
2 LEONARD M R, ZOUBIR A M. Multi-target tracking in distributed sensor networks using particle PHD filters[J]. Signal Processing2019159(6): 130-146.
3 DA K, LI T C, ZHU Y F, et al. A computationally efficient approach for distributed sensor localization and multitarget tracking[J]. IEEE Communication Letters202024(2): 335-338.
4 杨晓君, 沈涛, 王榕, 等. 不确定条件下单站无源定位技术[M]. 西安: 西北工业大学出版社, 2015: 35-75.
  YANG X J, SHEN T, WANG R, et al. Wireless sensor network positioning technology[M]. Xi’an: Northwestern Polytechnical University Press, 2015: 35-75 (in Chinese).
5 谭志. 无线传感器网络定位技术[M]. 北京: 电子工业出版社, 2021: 10-50.
  TAN Z. Wireless sensor network positioning technology[M]. Beijing: Publishing House of Electronics Industry, 2021: 10-50 (in Chinese).
6 马方立, 徐扬, 徐鹏. 基于大地经纬度的二维TDOA无源定位[J]. 通信学报201940(5): 136-143.
  MA F L, XU Y, XU P. 2D-TDOA passive location based on geodetic longitude and latitude[J]. Journal on Communications201940(5): 136-143 (in Chinese).
7 WANG G, CHEN H Y. An importance sampling method for TDOA-based source localization[J]. IEEE Transactions on Wireless Communications201110(5): 1560-1568.
8 ZHANG T N, MAO X P, ZHAO C L, et al. A novel grid selection method for sky-wave time difference of arrival localization[J]. IET Radar, Sonar & Navigation, 201913(4): 538-549.
9 LI Q, CHEN B X, YANG M L. Improved two-step constrained total least-squares TDOA localization algorithm based on the alternating direction method of multipliers[J]. IEEE Sensors Journal202020(22): 13666-13673.
10 ZOU Y B, LIU H P. TDOA localization with unknown signal propagation speed and sensor position errors[J]. IEEE Communications Letters202024(5): 1024-1027.
11 ZHANG L, ZHANG T, SHIN H S. An efficient constrained weighted least squares method with bias reduction for TDOA-based localization[J]. IEEE Sensors Journal202121(8): 10122-10131.
12 ZHOU Z L, RUI Y C, CAI X, et al. Constrained total least squares method using TDOA measurements for jointly estimating acoustic emission source and wave velocity[J]. Measurement2021182(5): 109758.
13 CHAN Y T, HO K C. A simple and efficient estimator by hyperbolic location[J]. IEEE Transactions on Signal Processing199442(4): 1905-1915.
14 YANG L, HO K C. An approximately efficient TDOA localization algorithm in closed-form for locating multiple disjoint sources with erroneous sensor positions[J]. IEEE Transactions on Signal Processing200957(12): 4598-4615.
15 LIU Y, GUO F C, YANG L, et al. An improved algebraic solution for TDOA localization with sensor position errors[J]. IEEE Communications Letters201519(12): 2218-2221.
16 SUN M, YANG L, HO K C. Efficient joint source and sensor localization in closed-form[J]. IEEE Signal Processing Letters201219(7): 399-402.
17 WANG D, YIN J X, TANG T, et al. A two-step weighted least-squares method for joint estimation of source and sensor locations: A general framework[J]. Chinese Journal of Aeronautics201932(2): 417-443.
18 RUI L Y, HO K C. Algebraic solution for joint localization and synchronization of multiple sensor nodes in the presence of beacon uncertainties[J]. IEEE Transactions on Wireless Communications201413(9): 5196-5210.
19 VAGHEFI R M, BUEHRER R M. Cooperative joint synchronization and localization in wireless sensor networks[J]. IEEE Transactions on Signal Processing201558(3): 1309-1320.
20 YUAN W J, WU N, ETZLINGER B, et al. Cooperative joint localization and clock synchronization based on Gaussian message passing in asynchronous wireless networks[J]. IEEE Transactions on Vehicular Technology201665(9): 7258-7273.
21 TIAN Q, FENG D Z, HU H S, et al. Bi-iterative algorithm for joint localization and time synchronization in wireless sensor networks[J]. Signal Processing2019154(1): 304-313.
22 WANG T, XIONG H, DING H, et al. TDOA-based joint synchronization and localization algorithm for asynchronous wireless sensor networks[J]. IEEE Transactions on Communications202068(5): 3107-3124.
23 WO?NIAK S, KOWALCZYK K. Passive joint localization and synchronization of distributed microphone arrays[J]. IEEE Signal Processing Letters201926(2): 292-296.
24 ZHANG J, WU P P. Joint sampling synchronization and source localization for wireless acoustic sensor networks[J]. IEEE Communications Letters202024(5): 1020-1023.
25 SUN M, YANG L. On the joint time synchronization and source localization using TOA measurements[J]. International Journal of Distributed Sensor Networks2013, 2013(1): 177-182.
26 WANG Y G, HUANG J, YANG L, et al. TOA-based joint synchronization and source localization with random errors in sensor positions and sensor clock biases[J]. Ad Hoc Networks201527(2): 99-111.
27 SHI J, WANG G, JIN L P. Moving source localization using TOA and FOA measurements with imperfect synchronization[J]. Signal Processing2021186(9): 108113.
28 KAZEMI S A R, AMIRI R, BEHNIA F. Efficient joint localization and synchronization in distributed MIMO radars[J]. IEEE Signal Processing Letters202027(7): 1200-1204.
29 SONG H B, WEN G J, LIANG Y Y, et al. Target localization and clock refinement in distributed MIMO radar systems with time synchronization errors[J]. IEEE Transactions on Signal Processing202169(5): 3088-3103.
30 WANG Y, HO K C. TDOA source localization in the presence of synchronization clock bias and sensor position errors[J]. IEEE Transactions on Signal Processing201361(18): 4532-4544.
31 王鼎, 尹洁昕, 刘瑞瑞, 等. 同步时钟偏差存在下的时差定位性能分析及改进的定位方法[J]. 电子学报201846(6): 1281-1288.
  WANG D, YIN J X, LIU R R, et al. Performance analysis and improvement for TDOA source localization in the presence of synchronization clock bias[J]. Acta Electronica Sinica201846(6): 1281-1288 (in Chinese).
32 王鼎, 尹洁昕, 高路, 等. 一种同步时钟偏差和传感器位置误差存在下的TDOA定位新方法[J]. 航空学报202243(4): 325405.
  WANG D, YIN J X, GAO L, et al. A novel method of TDOA localization in presence of synchronization clock bias and sensor position uncertainty[J]. Acta Aeronautica et Astronautica Sinica202243(4): 325405 (in Chinese).
33 HO K C. On the use of a calibration emitter for source localization in the presence of sensor position uncertainty[J]. IEEE Transactions on Signal Processing200856(12): 5758-5772.
34 ZHANG F R, SUN Y M, WAN Q. Calibrating the error from sensor position uncertainty in TDOA-AOA localization[J]. Signal Processing2020166(1): 107213.
35 LI J Z, GUO F C, YANG L, et al. On the use of calibration sensors in source localization using TDOA and FDOA measurements[J]. Digital Signal Processing201427(4): 33-43.
36 WANG D, ZHANG P C, YANG Z Y, et al. A novel estimator for TDOA and FDOA positioning of multiple disjoint sources in the presence of calibration emitters[J]. IEEE Access20198(12): 1613-1643.
37 TIAN Y, WANG Y R, RONG X L, et al. Mixed source localization and gain-phase perturbation calibration in partly calibrated symmetric uniform linear arrays[J]. Signal Processing2020166(1): 107267.
38 WU G Z, ZHANG M, GUO F C. On the use of a calibration emitter for direct position determination with single moving array in the presence of sensor gain and phase errors[J]. Digital Signal Processing2020102(2): 102734.
39 WANG D, YIN J X, CHEN X, et al. On the use of calibration emitters for TDOA source localization in the presence of synchronization clock bias and sensor location errors[J]. EURASIP Journal on Advances in Signal Processing20192019(1): 37.
40 JEAN O, WEISS A J. Passive localization and synchronization using arbitrary signals[J]. IEEE Transactions on Signal Processing201462(8): 2143-2150.
41 KAY S M. Fundamentals of statistical signal processing-Estimation theory[M]. Englewood Cliffs, NJ: Prentice-Hall, 1993: 128-145.
文章导航

/