基于蜻蜓翅几何及刚度相似性的仿生扑翼结构
收稿日期: 2022-09-09
修回日期: 2022-11-27
录用日期: 2023-01-04
网络出版日期: 2023-01-18
基金资助
国家自然科学基金(11972079)
A dragonfly-like flapping wing structure based on geometry and stiffness similarity
Received date: 2022-09-09
Revised date: 2022-11-27
Accepted date: 2023-01-04
Online published: 2023-01-18
Supported by
National Natural Science Foundation of China(11972079)
目前对于扑翼和扑旋翼飞行器的研究主要致力于实现仿生拍动模式的机构设计和气动特性分析,对昆虫翅的研究主要在微观尺度的生物学构成以及材料和力学特性。采用主成分分析法可建立昆虫翅展向抗弯刚度与几何形态参数之间的关系。以仿蜻蜓翅的扑翼设计为例,根据蜻蜓翅脉的分布可设计具有几何相似性的扑翼模型,进而基于蜻蜓翅的展向抗弯刚度实验结果建立仿蜻蜓翅扑翼设计的刚度相似性准则,以刚度相似性为约束对扑翼进行结构优化,分别制作了仅具有蜻蜓翅刚度相似性的矩形扑翼(JX-翼)、仅具有蜻蜓翅几何相似性的扑翼(JH-翼)、基于蜻蜓翅几何相似性和刚度相似性的仿生扑翼(GD-翼),并采用扑旋翼模型分别对这3种扑翼在5~15 Hz的拍动频率范围内进行了升力测试实验。结果表明,基于几何相似性及刚度相似性设计的GD-翼在12.5 Hz拍动频率时产生的升力比仅基于刚度相似性的矩形JX-翼提高25%,在低于6.5 Hz时与仅基于几何相似性设计的JH-翼相近,但在高于8 Hz时比JH-翼的升力大2倍以上。基于蜻蜓翅的几何相似性和刚度相似性的扑翼结构设计方法为提高仿生扑翼和扑旋翼的气动升力和效率提供了新的路径。
贺媛媛 , 杨炫 , 韩慧 , 王琦琛 , 张航 . 基于蜻蜓翅几何及刚度相似性的仿生扑翼结构[J]. 航空学报, 2023 , 44(14) : 227987 -227987 . DOI: 10.7527/S1000-6893.2022.27987
At present, the research on flapping wing and flapping wing rotor micro aerial vehicles is mainly focused on the flapping mechanism design and aerodynamic characteristics analysis. The research on insect wings is mainly focused on the biological composition in micro scale, the material and mechanics. In the present study, the principal component analysis method is used to establish the relationship between the spanwise bending stiffness and the geometric parameters of insect wings. Taking the dragonfly-like flapping wing design as an example, a bionic flapping wing of geometric similarity to the structure layout of a dragonfly wing was designed. In addition, a stiffness similarity criterion for the dragonfly-like flapping wing design was established based on the experimental results of the spanwise bending stiffness of the dragonfly wings. The flapping wing structure was then optimized by using the stiffness similarity criteria as a design constraint. Test samples of a flapping wing (JX-wing) of rectangular shape and only stiffness similarity to dragonfly wings, a flapping wing (JH-wing) with only geometric similarity to dragonfly wings and a flapping wing (GD-wing) of both geometric and stiffness similarity to dragonfly wings were manufactured. Aerodynamic lift forces of those flapping wings were measured in the flapping frequency range of 5-15 Hz based on a flapping wing rotor test platform. The test results show that the GD-wing of both geometric and stiffness similarity can generate 25% higher lift than the rectangular JX-wing of only stiffness similarity at 12.5 Hz flapping frequency. The lift produced by the GD-wing of both geometric and stiffness similarity is close to the JH-wing of only geometric similarity when the flapping frequency is below 6.5 Hz, but increased to at least twice larger than the JH-wing when the flapping frequency is above 8 Hz. The flapping wing structure design method based on both geometric similarity and stiffness similarity provides a pass-way to improve the aerodynamic lift and efficiency of flapping wing and flapping wing rotor.
1 | 昂海松. 微型飞行器的现状、难题和发展趋势[C]∥2014(第五届)中国无人机大会论文集. 2014: 664-669. |
Ang H S. Current situation, difficulties and development trend of micro air vehicles [C]∥ Proceedings of the 2014 (fifth) China UAV Conference. 2014: 664-669 (in Chinese). | |
2 | ISAKHANI H, XIONG C, CHEN W, et al. Towards locust-inspired gliding wing prototypes for micro aerial vehicle applications[J]. Royal Society Open Science, 2021, 8(6): 202253. |
3 | ZHOU Y, HO H W, CHU Q P. Extended incremental nonlinear dynamic inversion for optical flow control of micro air vehicles[J]. Aerospace Science and Technology, 2021, 116: 106889. |
4 | GUO S, YANG D, KUMMARI K L, et al. A smart material aeroelastic flapping wing micro rotorcraft[C]∥ Int Forum on Aeroelasticity and Structural Dynamics 2009. 2009. |
5 | JI B, ZHU Q L, GUO S J, et al. Design and experiment of a bionic flapping wing mechanism with flapping-twist-swing motion based on a single rotation[J]. AIP Advances, 2020, 10(6): 065018. |
6 | GEORGE R B. Design and analysis of a flapping wing mechanism for optimization[D]. Provo: Brigham Young University, 2011. |
7 | CHEN S, WANG L, GUO S J, et al. A bio-inspired flapping wing rotor of variant frequency driven by ultrasonic motor[J]. Applied Sciences, 2020, 10(1): 412. |
8 | JI B, LI Z, GUO S, et al. Aerodynamic analysis of a flapping wing aircraft for short landing[J]. Applied Sciences, 2020, 10(10): 3404. |
9 | LI H, GUO S. Aerodynamic efficiency of a bioinspired flapping wing rotor at low Reynolds number[J]. Royal Society Open Science, 2018, 5(3): 171307. |
10 | LI H, GUO S, ZHANG Y L, et al. Unsteady aerodynamic and optimal kinematic analysis of a micro flapping wing rotor[J]. Aerospace Science and Technology, 2017, 63: 167-178. |
11 | WEN Q Q, GUO S J, LI H, et al. Nonlinear dynamics of a flapping rotary wing: Modeling and optimal wing kinematic analysis[J]. Chinese Journal of Aeronautics, 2018, 31(5): 1041-1052. |
12 | ZHOU C, ZHANG Y L, WU J H. Effect of flexibility on unsteady aerodynamics forces of a purely plunging airfoil[J]. Chinese Journal of Aeronautics, 2020, 33(1): 88-101. |
13 | FAIRUZ Z M, ABDULLAH M Z, ZUBAIR M, et al. Effect of wing deformation on the aerodynamic performance of flapping wings: Fluid-structure interaction approach[J]. Journal of Aerospace Engineering, 2016, 29(4): 04016006. |
14 | KEENNON M, KLINGEBIEL K, WON H. Development of the nano hummingbird: A tailless flapping wing micro air vehicle[C]∥ 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012. |
15 | CHEN Y F, MA K, WOOD R J. Influence of wing morphological and inertial parameters on flapping flight performance[C]∥ 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2016: 2329-2336. |
16 | 周超, 吴江浩. 微型扑旋翼飞行器悬停的空气动力学研究[J]. 无人系统技术, 2018, 1(4): 33-42. |
ZHOU C, WU J H. Aerodynamics of micro flapping rotary wings in hovering flight[J]. Unmanned Systems Technology, 2018, 1(4): 33-42 (in Chinese). | |
17 | NEWMAN D J S. The functional wing morphology of some Odonata[D]. Exeter: University of Exeter, 1982. |
18 | KUKALOVá-PECK J. Origin of the insect wing and wing articulation from the arthropodan leg[J]. Canadian Journal of Zoology, 1983, 61(7): 1618-1669. |
19 | SONG F, XIAO K W, BAI K, et al. Microstructure and nanomechanical properties of the wing membrane of dragonfly[J]. Materials Science and Engineering: A, 2007, 457(1-2): 254-260. |
20 | DARVIZEH M, DARVIZEH A, RAJABI H, et al. Free vibration analysis of dragonfly wings using finite element method[J]. International Journal of Multiphysics, 2016, 3(1): 101-110. |
21 | WANG G Y, GUO Z G, LIU W M. Interfacial effects of superhydrophobic plant surfaces: A review[J]. Journal of Bionic Engineering, 2014, 11(3): 325-345. |
22 | KEMPF M. Efficient determination of reliability characteristics by incorporating experts’ knowledge [J]. TM-Technisches Messen, 2011, 78(10): 463-469. |
23 | 张金. 三种昆虫膜翅结构仿生模型与纳米力学[D]. 长春: 吉林大学, 2008. |
ZHANG J. Bionic model and nano-mechanics of membrane wing structure of three insects[D]. Changchun: Jilin University, 2008 (in Chinese). | |
24 | SUN J Y, PAN C X, TONG J, et al. Coupled model analysis of the structure and nano-mechanical properties of dragonfly wings[J]. IET Nanobiotechnology, 2010, 4(1): 10-18. |
25 | 于秀林, 任雪松. 多元统计分析[M]. 北京: 中国统计出版社, 1999. |
YU X L, REN X S. Multivariate statistical analysis[M]. Beijing: China Statistics Press, 1999 (in Chinese). | |
26 | COMBES S A. Wing flexibility and design for animal flight[D]. Seattle: University of Washington, 2002. |
27 | COMBES S A, DANIEL T L. Flexural stiffness in insect wings. II. Spatial distribution and dynamic wing bending[J]. The Journal of Experimental Biology, 2003, 206(Pt 17): 2989-2997. |
28 | 刘芸. 典型脉膜刚柔耦合结构昆虫翅膀的形态特征及力学性能[D]. 长春: 吉林大学, 2016. |
LIU Y. Morphological characteristics and mechanical properties of insect wings with typical vein membrane rigid-flexible coupling structure[D]. Changchun: Jilin University, 2016 (in Chinese). | |
29 | 贺媛媛, 张航, 王琦琛, 等. 扑旋翼刚度和翼梢形状对气动升力和效率的影响[J]. 航空学报, 2023, 44(12): 127779. |
HE Y Y, ZHANG H, WANG Q C, et al. The effect of stiffness and wingtip shape on the aerodynamic lift and efficiency of a flapping wing rotor[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(12): 127779 (in Chinese). |
/
〈 |
|
〉 |