航空发动机燃烧室热声不稳定的预设性能控制
收稿日期: 2022-10-28
修回日期: 2022-11-28
录用日期: 2022-12-27
网络出版日期: 2023-01-12
基金资助
国家自然科学基金(61973060)
Prescribed performance control of thermoacoustic instability in aero-engine combustion chambers
Received date: 2022-10-28
Revised date: 2022-11-28
Accepted date: 2022-12-27
Online published: 2023-01-12
Supported by
National Natural Science Foundation of China(61973060)
为降低航空发动机燃烧室NO x 的排放量,贫油预混的燃烧模式被广泛采用,但这将导致燃烧不稳定现象更加频繁地发生。航空发动机燃烧不稳定的能量来自于推进剂的燃烧,热声不稳定是其最主要的一种形式。为抑制热声不稳定现象,首先,在Culick模型的基础上,加入火焰燃烧响应对系统的影响,推导出含状态时滞的热声不稳定的数学模型;其次,基于此模型探究了从燃料喷射到燃烧释放热量的对流时间对热声系统稳定性的影响;然后,设计了预设性能反步主动控制方法,并求解得到在保证系统预设性能的前提下该对流时间的上界;最后,从理论分析和仿真结果两方面都验证了该主动控制方法可使热声不稳定系统的压力振荡渐近收敛,其动态满足预先设定的性能,且具有时滞鲁棒性。
孟晓 , 马丹 , 林宏军 , 陈超 . 航空发动机燃烧室热声不稳定的预设性能控制[J]. 航空学报, 2023 , 44(17) : 128182 -128182 . DOI: 10.7527/S1000-6893.2022.28182
To reduce NO x emissions in aero-engine combustion chambers, lean premixed pre-vaporized combustion technology is widely used, leading to more frequent combustion instability. The energy of aero-engine combustion instability comes from the combustion of the propellant, with thermoacoustic instability being the main form of combustion instability. To suppress the thermoacoustic instability, the influence of flame combustion response on the system is firstly considered based on the Culick model, and the mathematical model of thermoacoustic instability with state delay is derived. Based on the derived model, the influence of the convection time from fuel injection to heat release from combustion on the stability of the thermoacoustic system is then explored, a back-stepping active control method with prescribed performance designed, and the upper bound of the convection time obtained under the premise of ensuring the prescribed performance of the system. Both theoretical analysis and simulation results verify that the active control method can make the pressure oscillation of the thermoacoustic instability system converge asymptotically and satisfy the prescribed performance with time-delay robustness.
1 | HUANG X M, BAUMANN W T. Reduced-order modeling of dynamic heat release for thermoacoustic instability prediction[J]. Combustion Science and Technology, 2007, 179(3): 617-636. |
2 | ANNASWAMY A M, GHONIEM A F. Active control of combustion instability: Theory and practice[J]. IEEE Control Systems Magazine, 2002, 22(6): 37-54. |
3 | DAVIS L B. Dry low NO x combustion systems for GE heavy-duty gas turbines[C]∥Proceedings of ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. New York: ASME, 1996. |
4 | HUANG Y, YANG V. Dynamics and stability of lean-premixed swirl-stabilized combustion[J]. Progress in Energy and Combustion Science, 2009, 35(4): 293-364. |
5 | HIGGINS B. On the sound produced by a current of hydrogen gas passing through a tube[J]. Journal of Natural Philosophy and Chemical Arts, 1802, 1(2): 129-131. |
6 | RAYLEIGH L. The explanation of certain acoustical phenomena[J]. Nature, 1878, 18(455): 319-321. |
7 | PUTNAM A A, DENNIS W R. Burner oscillations of the gauze-tone type[J]. The Journal of the Acoustical Society of America, 1954, 26(5): 716-725. |
8 | COHEN J, ANDERSON T. Experimental investigation of near-blowout instabilities in a lean, premixed step combustor[C]∥Proceedings of the 34th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1996. |
9 | FLEIFIL M, ANNASWAMY A M, GHONEIM Z A, et al. Response of a laminar premixed flame to flow oscillations: A kinematic model and thermoacoustic instability results[J]. Combustion and Flame, 1996, 106(4): 487-510. |
10 | CULICK F E C. Combustion instabilities in liquid-fueled propulsion system―An overview[C]∥72nd Specialist’s Meeting on Combustion Instabilities in Liquid-Fueled Propulsion Systems. Paris: AGARD, 1989: 1-74. |
11 | STEELE R C, COWELL L H, CANNON S M, et al. Passive control of combustion instability in lean premixed combustors[J]. Journal of Engineering for Gas Turbines and Power, 2000, 122(3): 412-419. |
12 | 郭志辉, 李磊, 张澄宇, 等. 关于热声不稳定性现象的一种控制方法[J]. 工程热物理学报, 2008, 29(6): 947-950. |
GUO Z H, LI L, ZHANG C Y, et al. A control method for the suppression of thermoacoustic instability[J]. Journal of Engineering Thermophysics, 2008, 29(6): 947-950 (in Chinese). | |
13 | ZHU S S, LIU Y, LIANG X Y, et al. The acoustic transfer impedance of baffled injectors in three-dimensional combustion chambers[J]. Aerospace Science and Technology, 2022, 130: 107868. |
14 | TSIEN H S. Servo-stabilization of combustion in rocket motors[J]. Journal of the American Rocket Society, 1952, 22(5): 256-262. |
15 | FUNG Y T, YANG V, SINHA A. Active control of combustion instabilities with distributed actuators[J]. Combustion Science and Technology, 1991, 78(4-6): 217-245. |
16 | KRSTIC M, KRUPADANAM A, JACOBSON C. Self-tuning control of a nonlinear model of combustion instabilities[J]. IEEE Transactions on Control Systems Technology, 1999, 7(4): 424-436. |
17 | WEI W, WANG J, LI D H, et al. Feedback control of combustion oscillations in combustion chambers[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(11): 3274-3283. |
18 | GANGOPADHYAY T, RAMANAN V, AKINTAYO A, et al. 3D convolutional selective autoencoder for instability detection in combustion systems[J]. Energy and AI, 2021, 4: 100067. |
19 | CELLIER A, LAPEYRE C J, ?ZTARLIK G, et al. Detection of precursors of combustion instability using convolutional recurrent neural networks[J]. Combustion and Flame, 2021, 233: 111558. |
20 | MILAN P J, HICKEY J P, WANG X J, et al. Deep-learning accelerated calculation of real-fluid properties in numerical simulation of complex flowfields[J]. Journal of Computational Physics, 2021, 444: 110567. |
21 | ZHAO D, REYHANOGLU M. Feedback control of acoustic disturbance transient growth in triggering thermoacoustic instability[J]. Journal of Sound and Vibration, 2014, 333(16): 3639-3656. |
22 | RUBIO-HERVAS J, ZHAO D, REYHANOGLU M. Nonlinear feedback control of self-sustained thermoacoustic oscillations[J]. Aerospace Science and Technology, 2015, 41: 209-215. |
23 | LI X Y, ZHAO D. Feedback control of self-sustained nonlinear combustion oscillations[J]. Journal of Engineering for Gas Turbines and Power, 2016, 138(6): 061505. |
24 | 魏伟, 唐豪杰, 李东海, 等. 黎开管热声振荡的主动控制研究[J]. 工程热物理学报, 2011, 32(10): 1777-1780. |
WEI W, TANG H J, LI D H, et al. Active control of thermoacoustic oscillations in a rijke tube combustor[J]. Journal of Engineering Thermophysics, 2011, 32(10): 1777-1780 (in Chinese). | |
25 | CULICK F E C. Nonlinear behavior of acoustic waves in combustion chambers—I[J]. Acta Astronautica, 1976, 3(9-10): 715-734. |
26 | YANG V, KIM S, CULICK F. Third-order nonlinear acoustic waves and triggering of pressure oscillations in combustion chambers, Part I: Longitudinal modes[C]∥ Proceedings of the 23rd Joint Propulsion Conference. Reston: AIAA, 1987. |
27 | SUMMERFIELD M, CAVENY L H, BATTISTA R A, et al. Theory of dynamic extinguishment of solid propellants with special reference to nonsteady heat feedback law[J]. Journal of Spacecraft and Rockets, 1971, 8(3): 251-258. |
28 | CROCCO L. Aspects of combustion stability in liquid propellant rocket motors part I: Fundamentals. low frequency instability with monopropellants[J]. Journal of the American Rocket Society, 1951, 21(6): 163-178. |
29 | CROCCO L. Research on combustion instability in liquid propellant rockets[J]. Symposium (International) on Combustion, 1969, 12(1): 85-99. |
30 | BECHLIOULIS C P, ROVITHAKIS G A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance[J]. IEEE Transactions on Automatic Control, 2008, 53(9): 2090-2099. |
31 | 孙晓峰, 董旭, 张光宇, 等. 特征值理论在稳定性预测中的应用研究进展[J]. 航空学报, 2022, 43(10): 527408. |
SUN X F, DONG X, ZHANG G Y, et al. Progress review of application of eigenvalue theory to stability prediction[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527408 (in Chinese). | |
32 | HADDAD W M, LEONESSA A, CORRADO J R, et al. State space modeling and robust reduced-order control of combustion instabilities[J]. Journal of the Franklin Institute, 1999, 336(8): 1283-1307. |
33 | DOWLING A P, STOW S R. Acoustic analysis of gas turbine combustors[J]. Journal of Propulsion and Power, 2003, 19(5): 751-764. |
34 | MCMANUS K R, POINSOT T, CANDEL S M. A review of active control of combustion instabilities[J]. Progress in Energy and Combustion Science, 1993, 19(1): 1-29. |
35 | POLIFKE W. Modeling and analysis of premixed flame dynamics by means of distributed time delays[J]. Progress in Energy and Combustion Science, 2020, 79: 100845. |
36 | PARK P. A delay-dependent stability criterion for systems with uncertain time-invariant delays[J]. IEEE Transactions on Automatic Control, 1999, 44(4): 876-877. |
37 | KOSTARIGKA A K, ROVITHAKIS G A. Prescribed performance output feedback/observer-free robust adaptive control of uncertain systems using neural networks[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2011, 41(6): 1483-1494. |
38 | KOSTARIGKA A K, ROVITHAKIS G A. Adaptive dynamic output feedback neural network control of uncertain MIMO nonlinear systems with prescribed performance[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(1): 138-149. |
39 | 耿宝亮, 梁勇, 祁亚辉. 严格反馈系统预设性能控制[M]. 北京: 北京航空航天大学出版社, 2018: 1-34. |
GENG B L, LIANG Y, QI Y H. Prescribed performance control of strict feed-back system[M]. Beijing: Beihang University Press, 2018: 1-34 (in Chinese). |
/
〈 |
|
〉 |