空间非合作目标全向柔顺对接关节设计与仿真
收稿日期: 2022-09-09
修回日期: 2022-10-18
录用日期: 2022-11-26
网络出版日期: 2023-01-12
基金资助
国家自然科学基金(51875046)
Design and simulation of omnidirectional compliant docking joint for space non-cooperative target
Received date: 2022-09-09
Revised date: 2022-10-18
Accepted date: 2022-11-26
Online published: 2023-01-12
Supported by
National Natural Science Foundation of China(51875046)
针对空间非合作目标刚性对接时接触力过大和难以补偿不同轴误差的问题,提出一种3R-1T型全向柔顺对接关节的设计方法,既能被动柔顺适应偏距或偏角误差,又能对空间六维接触力进行缓冲卸载,同时能利用锁紧机构实现刚柔双模切换。利用含耗散函数的拉格朗日方程建立了搭载柔顺对接关节的全向柔顺复合航天器动力学模型,通过接触力仿真实验证明了柔顺对接关节的全向柔顺缓冲与阻尼吸振机制。在刚性和柔性两种非合作目标对接的模拟实验中,进行了24种典型偏距和偏角复合工况的对比研究,表明全向柔顺对接的对接成功率是刚性对接的近5倍,且接触力峰值降幅最高可达89.5%,验证了3R-1T型全向柔顺对接关节在空间对接中应用的合理性和有效性。
褚明 , 蔺绍奇 , 徐升 , 常睿 . 空间非合作目标全向柔顺对接关节设计与仿真[J]. 航空学报, 2023 , 44(13) : 428024 -428024 . DOI: 10.7527/S1000-6893.2022.28024
Aiming at the problems of excessive contact force and difficulty in compensating different axis errors during rigid docking of non-cooperative targets in space, a 3R-1T omnidirectional compliant docking joint is developed, which can not only generate passive flexible motion to compensate errors of distance or angle, but also buffer and unload six-dimensional contact force in space. Moreover, it can realize rigid-flexible dual-mode conversion operation by means of locking mechanism. The flexible dynamic model of spacecraft complex with compliant docking joint is established by using Lagrange’s equation containing dissipation function. A contact force simulation model is established, which verifies the mechanism of omnidirectional compliance and damping stabilization. Furthermore, two non-cooperative target docking models, rigid and flexible, are built. The simulation experiments under 24 typical combined errors of distance and angle shows that the success rate of compliant docking is nearly 5 times that of rigid docking, and the peak value of contact force decreases up to 89.5%. Therefore, the rationality and effectiveness of 3R-1T omnidirectional compliant docking joint applied to space compliant docking task are verified.
1 | TATSCH A, FITZ-COY N, GLADUN S. On-orbit servicing: A brief survey[C]∥Performance Metrics for Intelligent Systems Conference. 2006. |
2 | 梁斌, 徐文福, 李成, 等. 地球静止轨道在轨服务技术研究现状与发展趋势[J]. 宇航学报, 2010, 31(1): 1-13. |
LIANG B, XU W F, LI C, et al. The status and prospect of orbital servicing in the geostationary orbit[J]. Journal of Astronautics, 2010, 31(1): 1-13 (in Chinese). | |
3 | 崔乃刚, 王平, 郭继峰, 等. 空间在轨服务技术发展综述[J]. 宇航学报, 2007, 28(4): 805-811. |
CUI N G, WANG P, GUO J F, et al. A review of on-orbit servicing[J]. Journal of Astronautics, 2007, 28(4): 805-811 (in Chinese). | |
4 | XIAO Y Z, JIN Y Q, CHEN H L, et al. Research progress on several key technologies of on-orbit service[J]. Aerospace Shanghai (Chinese & English), 2021, 38(3): 85-95 (in Chinese). |
5 | 梁斌, 杜晓东, 李成, 等. 空间机器人非合作航天器在轨服务研究进展[J]. 机器人, 2012, 34(2): 242-256. |
LIANG B, DU X D, LI C, et al. Advances in space robot on-orbit servicing for non-cooperative spacecraft[J]. Robot, 2012, 34(2): 242-256 (in Chinese). | |
6 | 丰飞. 空间大容差末端执行器及其软捕获策略研究[D]. 哈尔滨: 哈尔滨工业大学, 2013: 1-5. |
FENG F. Research on space large misalignment tolerance end-effector and its soft capture strategy[D]. Harbin: Harbin Institute of Technology, 2012: 1-5 (in Chinese). | |
7 | XU S, CHU M, SUN H X. Design and stiffness optimization of bionic docking mechanism for space target acquisition[J]. Applied Sciences, 2021, 11(21): 10278. |
8 | 王文龙, 杨建中. 航天器对接与捕获技术综述[J]. 机械工程学报, 2021, 57(20): 215-231. |
WANG W L, YANG J Z. Spacecraft docking & capture technology: review[J]. Journal of Mechanical Engineering. 2021, 57(20): 215-231 (in Chinese). | |
9 | ZHANG X, HUANG Y Y, CHEN X Q. Analysis and design of parameters in soft docking of micro/small satellites[J]. Science China Information Sciences, 2017, 60(5): 050204. |
10 | HUANG P F, HU Z H, MENG Z J. Coupling dynamics modelling and optimal coordinated control of tethered space robot[J]. Aerospace Science and Technology, 2015, 41: 36-46. |
11 | HUANG P F, ZHANG F, CAI J, et al. Dexterous tethered space robot: design, measurement, control, and experiment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1452-1468. |
12 | HUANG P F, WANG D K, MENG Z J, et al. Impact dynamic modeling and adaptive target capturing control for tethered space robots with uncertainties[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(5): 2260-2271. |
13 | MOTAGHEDI P, STAMM S. 6 DOF testing of the orbital express capture system[C]∥ Proceedings of SPIE-the International Society for Optical Engineering. 2005: 66-81. |
14 | UYAMA N, NAKANISHI H, NAGAOKA K, et al. Impedance-based contact control of a free-flying space robot with a compliant wrist for non-cooperative satellite capture[C]∥2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2012: 4477-4482. |
15 | UYAMA N, FUJII Y, NAGAOKA K, et al. Experimental evaluation of contact/impact dynamics between a space robot with a compliant wrist and a free-flying object[C]∥International Symposium on Artificial Intelligence. 2012. |
16 | 刘晋豪. 非合作卫星对接缓冲机构及其地面实验的研究[D]. 哈尔滨: 哈尔滨工业大学, 2015: 10-17. |
LIU J H. Buffering mechanism and ground experiment for capturing of non-cooperative satellite[D]. Harbin: Harbin Institute of Technology, 2015: 10-17 (in Chinese). | |
17 | MATUNAGA S, KANZAWA T, OHKAMI Y. Rotational motion-damper for the capture of an uncontrolled floating satellite[J]. Control Engineering Practice, 2001, 9(2): 199-205. |
18 | DAI H H, JING X J, WANG Y, et al. Post-capture vibration suppression of spacecraft via a bio-inspired isolation system[J]. Mechanical Systems and Signal Processing, 2018, 105: 214-240. |
19 | DAI H H, JING X J, SUN C, et al. Accurate modeling and analysis of a bio-inspired isolation system: with application to on-orbit capture[J]. Mechanical Systems and Signal Processing, 2018, 109: 111-133. |
20 | WANG X, YUE X K, DAI H H, et al. Vibration suppression for post-capture spacecraft via a novel bio-inspired Stewart isolation system[J]. Acta Astronautica, 2020, 168: 1-22. |
21 | 王鑫, 岳晓奎, 代洪华, 等. 在轨服务中的仿生抗冲击结构研究[J]. 宇航学报, 2020, 41(8): 1000-1007. |
WANG X, YUE X K, DAI H H, et al. Research on bio-inspired anti-impact structure in on-orbit servicing[J]. Journal of Astronautics, 2020,41(8): 1000-1007 (in Chinese). | |
22 | 王晓雪. 非合作目标对接捕获机构的研究[D]. 哈尔滨: 哈尔滨工业大学, 2009: 9-10. |
WANG X X. Research on the docking and capturing mechanism for the uncooperative target satellites[D]. Harbin: Harbin Institute of Technology, 2009: 9-10 (in Chinese). | |
23 | 张禹. 卫星喷管对接装置及捕获策略研究[D]. 哈尔滨: 哈尔滨工业大学, 2016: 21-50. |
ZHANG Y. Research on satellite nozzle docking device and capture strategy[D]. Harbin: Harbin Institute of Technology, 2016: 21-50 (in Chinese). | |
24 | HIRZINGER G, LANDZETTEL K, BRUNNER B, et al. DLR’s robotics technologies for on-orbit servicing[J]. Advanced Robotics, 2004, 18(2): 139-174. |
25 | HIRZINGER G, BRUNNER B, LANDZETTEL K, et al. Space robotics—DLR’s telerobotic concepts, lightweight arms and articulated hands[J]. Autonomous Robots, 2003, 14(2): 127-145. |
/
〈 |
|
〉 |