流体力学与飞行力学

大温差下印刷电路板式换热器起动过程建模与实验

  • 王子豪 ,
  • 杜家磊 ,
  • 梁国柱 ,
  • 王浩泽 ,
  • 蔡震宇 ,
  • 马晓秋
展开
  • 1.北京航空航天大学 宇航学院,北京  102206
    2.北京航天动力研究所,北京  100076
    3.北京航天动力研究所 低温液体推进技术实验室,北京  100076
.E-mail: lgz@buaa.edu.cn

收稿日期: 2022-08-03

  修回日期: 2022-08-15

  录用日期: 2022-12-23

  网络出版日期: 2023-01-12

Modelling and experimental investigation into starting process of printed circuit heat exchangers at large temperature difference

  • Zihao WANG ,
  • Jialei DU ,
  • Guozhu LIANG ,
  • Haoze WANG ,
  • Zhenyu CAI ,
  • Xiaoqiu MA
Expand
  • 1.School of Astronautics,Beihang University,Beijing  102206,China
    2.Beijing Aerospace Propulsion Institute,Beijing  100076,China
    3.Laboratory of Science and Technology on Cryogenic Liquid Propulsion,Beijing Aerospace Propulsion Institute,Beijing  100076,China
E-mail: lgz@buaa.edu.cn

Received date: 2022-08-03

  Revised date: 2022-08-15

  Accepted date: 2022-12-23

  Online published: 2023-01-12

摘要

针对大温差下的印刷电路板式换热器(PCHE)的起动过程,提出了一种一维瞬态换热计算模型,该模型考虑了印刷电路板式换热器固体结构的内部导热过程,可计算起动过程中换热介质和印刷电路板式换热器的温度响应。同时以N2为换热介质,开展了印刷电路板式换热器的瞬态换热实验,N2的最高、最低温度分别为450、103 K,将模型计算结果与实验结果进行对比,冷侧N2出口温度的模型计算值与实验值之间的平均误差为11.3 K,实验结束时热、冷侧换热量的计算偏差均在7%以内,该结果证明了所提出的计算模型的有效性。在上述计算模型的基础上,对起动过程中印刷电路板式换热器工作参数的空间分布和时域变化特征进行了计算和分析,结果表明换热器的外侧盖板与固体核心区之间的传热过程非常重要,在进行大温差下的瞬态换热过程计算时不应被轻易忽略,同时增大两侧换热介质的流量和减小换热器外侧盖板的厚度是缩短印刷电路板式换热器起动过程响应时间的有效方法,且在一定的流量比范围内,两侧换热介质入口雷诺数之积是影响响应时间的重要因素。

本文引用格式

王子豪 , 杜家磊 , 梁国柱 , 王浩泽 , 蔡震宇 , 马晓秋 . 大温差下印刷电路板式换热器起动过程建模与实验[J]. 航空学报, 2023 , 44(16) : 127893 -127893 . DOI: 10.7527/S1000-6893.2022.27893

Abstract

A one-dimensional transient heat transfer model is developed in this study for the starting process of Printed Circuit Heat Exchangers (PCHE) at large temperature difference. The model considers the internal heat conduction process of the solid material of the printed circuit heat exchanger and is able to predict the temperature behavior of both fluid and solid materials. Transient heat exchanger experiments using N2 as the medium on the printed circuit heat exchanger are conducted. The maximum and minimum temperature of N2 are 450 K and 103 K, respectively. Comparison of the model prediction results with the experiment results proves the validity of the model. The average deviation of the outlet temperature at the cold side during the starting process is 11.3 K and the calculation deviations of heat transfer on both sides are within 7%. Furthermore, the model is applied to the calculation and analysis of the spatial distribution and time domain variation characteristics of the operating parameters of the printed circuit heat exchanger. The results indicate that the heat transfer between the cover plate and the core region of the printed circuit heat exchanger is important and cannot be easily ignored in the simulation of the transient process at large temperature difference. The results also show that increasing mass flow rates of fluid at both sides and decreasing the thickness of the cover plate are effective methods to shorten the response time of the starting process. Moreover, in a certain range of the mass flow rate ratio, the product of the Reynolds Number at the inlet of the printed circuit heat exchanger on both sides is an important factor affecting the response time.

参考文献

1 邓帆, 谭慧俊, 董昊, 等. 预冷组合动力高超声速空天飞机关键技术研究进展[J]. 推进技术201839(1): 1-13.
  DENG F, TAN H J, DONG H, et al. Progress on key technologies of hypersonic aerospace plane with pre-cooled combined propulsion[J]. Journal of Propulsion Technology201839(1): 1-13 (in Chinese).
2 马海波, 张蒙正. 预冷空气类动力系统发展历程浅析[J]. 火箭推进201945(2): 1-8.
  MA H B, ZHANG M Z. Preliminary analysis on development course of pre-cooling propulsion system[J]. Journal of Rocket Propulsion201945(2): 1-8 (in Chinese).
3 蔡伊雯, 金志光, 周建兴, 等. 一种多热力循环组合发动机进气道设计方案[J]. 航空学报202041(11): 123745.
  CAI Y W, JIN Z G, ZHOU J X, et al. Design scheme of combined multiple thermodynamic cycle engine inlet[J]. Acta Aeronautica et Astronautica Sinica202041(11): 123745 (in Chinese).
4 邹正平, 王一帆, 额日其太, 等. 高超声速强预冷航空发动机技术研究进展[J]. 航空发动机202147(4): 8-21.
  ZOU Z P, WANG Y F, ERI Q T, et al. Research progress on hypersonic precooled airbreathing engine technology[J]. Aeroengine202147(4): 8-21 (in Chinese).
5 左林玄, 张辰琳, 王霄, 等. 高超声速飞机动力需求探讨[J]. 航空学报202142(8): 525798.
  ZUO L X, ZHANG C L, WANG X, et al. Requirement of hypersonic aircraft power[J]. Acta Aeronautica et Astronautica Sinica202142(8): 525798 (in Chinese).
6 马晓秋. 预冷吸气组合发动机研究进展与关键技术分析[J]. 科技导报202038(12): 85-95.
  MA X Q. Research progress of pre-cooled air-breathing combined engines and analysis of the key technology[J]. Science & Technology Review202038(12): 85-95 (in Chinese).
7 罗佳茂, 杨顺华, 张建强, 等. 换热预冷发动机预冷特性和发动机性能数值研究[J]. 航空学报201940(5): 122652.
  LUO J M, YANG S H, ZHANG J Q, et al. Numerical investigation of pre-cooling characteristics of heat exchange pre-cooling engine and engine performance[J]. Acta Aeronautica et Astronautica Sinica201940(5): 122652 (in Chinese).
8 DONG P C, TANG H L, CHEN M, et al. Overall performance design of paralleled heat release and compression system for hypersonic aeroengine[J]. Applied Energy2018220: 36-46.
9 MYLAVARAPU S K, SUN X D, CHRISTENSEN R N, et al. Fabrication and design aspects of high-temperature compact diffusion bonded heat exchangers[J]. Nuclear Engineering and Design2012249: 49-56.
10 Website of Heatric Division of Meggitt (UK) Ltd[EB/OL]. [2022-07-15]. .
11 DONG P C, TANG H L, CHEN M. A trade-off analysis on the paralleled heat release and compression system of a hypersonic aeroengine[J]. Energy Procedia2019158: 1530-1536.
12 WEBBER H, FEAST S, BOND A. Heat exchanger design in combined cycle engines[J]. Journal of the British Interplanetary Society200962: 122-130.
13 HEMPSELL M, BOND A, VARVILL R, et al. Progress on the SKYLON and SABRE development programme[C]∥62nd International Astronaut Congress 2011. Paris: International Astronautical Federation, 2011: 7519-7525.
14 SEO J W, KIM Y H, KIM D, et al. Heat transfer and pressure drop characteristics in straight microchannel of printed circuit heat exchangers[J]. Entropy201517(5): 3438-3457.
15 MYLAVARAPU S K, SUN X D, GLOSUP R E, et al. Thermal hydraulic performance testing of printed circuit heat exchangers in a high-temperature helium test facility[J]. Applied Thermal Engineering201465(1-2): 605-614.
16 SHIN J H, YOON S H. Thermal and hydraulic performance of a printed circuit heat exchanger using two-phase nitrogen[J]. Applied Thermal Engineering2020168: 114802.
17 KWON D, JIN L X, JUNG W, et al. Experimental investigation of heat transfer coefficient of mini-channel PCHE(printed circuit heat exchanger)[J]. Cryogenics201892: 41-49.
18 LI H, LIU H X, ZOU Z P. Experimental study and performance analysis of high-performance micro-channel heat exchanger for hypersonic precooled aero-engine[J]. Applied Thermal Engineering2021182: 116108.
19 LIU B H, LU M J, SHUI B, et al. Thermal-hydraulic performance analysis of printed circuit heat exchanger precooler in the Brayton cycle for supercritical CO2 waste heat recovery[J]. Applied Energy2022305: 117923.
20 KIM W, BAIK Y J, JEON S, et al. A mathematical correlation for predicting the thermal performance of cross, parallel, and counterflow PCHEs[J]. International Journal of Heat and Mass Transfer2017106: 1294-1302.
21 ZHAO Z C, ZHANG X, ZHAO K, et al. Numerical investigation on heat transfer and flow characteristics of supercritical nitrogen in a straight channel of printed circuit heat exchanger[J]. Applied Thermal Engineering2017126: 717-729.
22 李玮哲. 超临界甲烷在印刷电路板换热器中加热过程模拟[D]. 上海: 上海交通大学, 2019: 53-58.
  LI W Z. Numerical investigation on the heating of supercritical methane in a printed circuited heat exchanger[D]. Shanghai: Shanghai Jiao Tong University, 2019: 53-58 (in Chinese).
23 ZHOU Y L, YIN D D, GUO X T, et al. Numerical analysis of the thermal and hydraulic characteristics of CO2/propane mixtures in printed circuit heat exchangers[J]. International Journal of Heat and Mass Transfer2022185: 122434.
24 DENG T R, LI X H, WANG Q W, et al. Dynamic modelling and transient characteristics of supercritical CO2 recompression Brayton cycle[J]. Energy2019180: 292-302.
25 CHEN M H, KIM I H, SUN X D, et al. Transient analysis of an FHR coupled to a helium Brayton power cycle[J]. Progress in Nuclear Energy201583: 283-293.
26 CHEN M H, SUN X D, CHRISTENSEN R N, et al. Experimental and numerical study of a printed circuit heat exchanger[J]. Annals of Nuclear Energy201697: 221-231.
27 CHEN K Q, PU W H, ZHANG Q, et al. Thermal performance analysis on steady-state and dynamic response characteristic in solar tower power plant based on supercritical carbon dioxide Brayton cycle[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects2020, doi: 10.1080/15567036.2021.183800 .
28 JIANG Y, LIESE E, ZITNEY S E, et al. Design and dynamic modeling of printed circuit heat exchangers for supercritical carbon dioxide Brayton power cycles[J]. Applied Energy2018231: 1019-1032.
29 MARCHIONNI M, CHAI L, BIANCHI G, et al. Numerical modelling and performance maps of a printed circuit heat exchanger for use as recuperator in supercritical CO2 power cycles[J]. Energy Procedia2019161: 472-479.
30 DESHMUKH A, KAPAT J, KHADSE A. Transient thermodynamic modeling of air cooler in supercritical CO2 Brayton cycle for solar molten salt application[J]. Journal of Energy Resources Technology2021143(2): 022103.
31 杨光, 邵卫卫. 印刷电路板换热器结构及传热关联式研究进展[J]. 化工进展202140(): 13-26.
  YANG G, SHAO W. Review of optimization and heat transfer correlations of printed circuit heat exchanger[J]. Chemical Industry and Engineering Progress202140(S1): 13-26 (in Chinese).
32 王子豪, 梁国柱. 微通道内低马赫数气体的流动与换热特性理论研究[J]. 推进技术202243(5): 21007.
  WANG Z H, LIANG G Z. Theoretical study on flow and heat transfer characteristics of gas at low Mach number in microchannels[J]. Journal of Propulsion Technology202243(5): 21007 (in Chinese).
33 HESSELGREAVES J E. Compact heat exchangers: selection, design and operation[M]. Amsterdam: Pergamon, 2001: 226.
34 TRAN T N, WAMBSGANSS M W, FRANCE D M. Small circular- and rectangular- channel boiling with two refrigerants[J]. International Journal of Multiphase Flow199622(3): 485-498.
35 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006: 257-258.
  YANG S M, TAO W Q. Heat transfer[M]. 4th ed. Beijing: Higher Education Press, 2006: 257-258 (in Chinese).
36 NIST Reference Fluid Thermodynamic and Transport Properties Database[EB/OL]. [2022-07-15]. .
37 ZHAO Z C, ZHANG Y, CHEN X D, et al. Experimental and numerical investigation of thermal-hydraulic performance of supercritical nitrogen in airfoil fin printed circuit heat exchanger[J]. Applied Thermal Engineering2020168: 114829.
文章导航

/