材料工程与机械制造

基于三维数字图像相关法的管材胀形试验

  • 邹正平 ,
  • 张猛 ,
  • 郎利辉
展开
  • 1. 北京航空航天大学 能源与动力工程学院, 北京 100191;
    2. 北京航空航天大学 机械工程及自动化学院, 北京 100191

收稿日期: 2021-06-21

  修回日期: 2021-07-26

  网络出版日期: 2023-01-03

基金资助

国家自然科学基金(516750291005167);四川省省院省校合作项目(2019YFSY0034)

Tube bulging test based on 3D digital image correlation method

  • ZOU Zhengping ,
  • ZHANG Meng ,
  • LANG Lihui
Expand
  • 1. School of Energy and Power Engineering, Beihang University, Beijing 100191, China;
    2. School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China

Received date: 2021-06-21

  Revised date: 2021-07-26

  Online published: 2023-01-03

Supported by

National Natural Science Foundation of China (516750291005167); Sichuan Science and Technology Plan Project (2019YFSY0034)

摘要

相较于传统材料性能测试试验,管材液压胀形试验能更准确的复现管材在流体面力作用下的材料流动及硬化规律。针对传统测量方法中存在的破裂冲击及轴向轮廓测量难等现象,利用三维数字图像相关法(3D-DIC)对5A02铝合金管材胀形试验进行测量。建立了管材自由区域的力学模型,给出了自由区域壁厚分布计算的一般方法,获取了5A02铝合金管材的本构方程,并采取有限元方法对上述结果进行对照验证。结果表明,采取幂指数形式的本构方程的最大相对误差小于10%,轮廓最大相对误差误差小于1.5%,壁厚最大相对误差小于2%。最后,通过控制自由区域的长径比获得了5A02管材左侧成形极限曲线(FLC)。

本文引用格式

邹正平 , 张猛 , 郎利辉 . 基于三维数字图像相关法的管材胀形试验[J]. 航空学报, 2022 , 43(12) : 425989 -425989 . DOI: 10.7527/S1000-6893.2022.25989

Abstract

The constitutive equation and the forming limit diagram are effective means for evaluating the deformability and formability of the metal material. Compared with the traditional tube mechanical properties test, the Tube Bulging Test (TBT) can be used to get more accurate constitutive equation and forming limit of the tube under the action of fluid force. To overcome the problems of mesh distortion and difficulty in axial profile measurement with the traditional method, the 3D Digital Image Correlation method (3D-DIC) was used to obtain and reconstruct the bulging contour of the 5A02 aluminum alloy tube. A mechanical model of the free bulging region of the tube was established, a calculation formula of wall thickness distribution in the bulging region of the tube was given, and the constitutive equation of the alloy was obtained. The results were compared and verified by the finite element method. It is found that the maximum relative error of the power exponential constitutive equation is less than 10%, the maximum relative error of the contour is less than 1.5%, and the maximum relative error of the wall thickness is less than 2%. Finally, the left Forming Limit Curve (FLC) of the tube was obtained by controlling the aspect ratio of the free area.

参考文献

[1] LANG L H, WANG Z R, KANG D C, et al. Hydroforming highlights:Sheet hydroforming and tube hydroforming[J]. Journal of Materials Processing Technology, 2004, 151(1-3):165-177.
[2] MARLAPALLE B G, HINGOLE R S. Predictions of formability parameters in tube hydroforming process[J].SN Applied Sciences, 2021, 3(6):1-18.
[3] 丁雨田, 王兴茂, 孟斌, 等. GH3625合金无缝管材组织及性能调控研究[J]. 稀有金属, 2019, 43(3):274-282. DING Y T, WANG X M, MENG B, et al. Microstructures and properties of GH3625 alloy tubes in various states with solution treatment[J]. Chinese Journal of Rare Metals, 2019, 43(3):274-282(in Chinese).
[4] WOO D M. Tube-bulging under internal pressure and axial force[J]. Journal of Engineering Materials and Technology, 1973, 95(4):219-223.
[5] FUCHIZAWA S, NARAZAKI S. Bulge test for determining stress-strain characteristics of thin tubes[J]. Advanced Technology of Plasticity, 1993,(1):488-493.
[6] FUCHIZAWA S. Influence of strain hardening exponent on the deformation of thin-walled tube of finite length subjected to hydrostatic external pressure[J]. Advanced Technology of Plasticity, 1984(1):297-302.
[7] CARLEER B, VAN DER KEVIE G, DE WINTER L, et al. Analysis of the effect of material properties on the hydroforming process of tubes[J]. Journal of Materials Processing Technology, 2000, 104(1-2):158-166.
[8] FUCHIZAWA S. Influence of plastic anisotropy on deformation of thin-walled tubes in bulge forming[M]//Advanced Technology of Plasticity 1987. Berlin, Heidelberg:Springer Berlin Heidelberg, 1987:727-732.
[9] STRANO M, ALTAN T. An inverse energy approach to determine the flow stress of tubular materials for hydroforming applications[J]. Journal of Materials Processing Technology, 2004, 146(1):92-96.
[10] HWANG Y M, LIN Y K, CHUANG H C. Forming limit diagrams of tubular materials by bulge tests[J]. Journal of Materials Processing Technology, 2009, 209(11):5024-5034.
[11] 程鹏志, 郎利辉, 葛宇龙, 等. 力约束管材自由胀形试验研究与材料性能测试[J]. 北京航空航天大学学报, 2015, 41(4):686-692. CHENG P Z, LANG L H, GE Y L, et al. Tube free bulging experiment with force-end and material properties testing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(4):686-692(in Chinese).
[12] YUAN S J, XIE W C, LIN Y L, et al. Analytical model and testing method for equivalent stress-strain relation of anisotropic thin-walled steel tube[J]. Journal of Testing and Evaluation, 2019, 47(2):20170280.
[13] VITU L, BOUDEAU N, MALÉCOT P, et al. Evaluation of models for tube material characterization with the tube bulging test in an industrial setting[J]. International Journal of Material Forming, 2018, 11(5):671-686.
[14] ZHU H H, HE Z B, LIN Y L, et al. The development of a novel forming limit diagram under nonlinear loading paths in tube hydroforming[J]. International Journal of Mechanical Sciences, 2020, 172:105392.
[15] SADLOWSKA H, MORAWINSKI L, JASINSKI C. Strain measurements in free tube hydroforming process[J]. Archives of Metallurgy and Materials, 2020, 65(1):257-263.
[16] 赵赫, 夏勇, 姚再起, 等. 304不锈钢薄壁管环向材料力学行为的实验表征[J]. 汽车安全与节能学报, 2015, 6(3):250-258. ZHAO H, XIA Y, YAO Z Q, et al. Experimental characterization on material mechanical behavior in the hoop direction of 304 stainless steel thin-walled tubes[J]. Journal of Automotive Safety and Energy, 2015, 6(3):250-258(in Chinese).
[17] 张清慧. 轴向冲击下圆柱壳的屈曲及后屈曲[D]. 宁波:宁波大学, 2017:22-30. ZHANG Q H. The buckling and post-buckling of cylindrical shell under axial impact[D]. Ningbo:Ningbo University, 2017:22-30(in Chinese).
[18] 李泷杲. 金属薄壁管液压成形应用基础研究[D]. 南京:南京航空航天大学, 2007:10-20. LI S G. Foundamental study on tube hydroforming process[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2007:10-20(in Chinese).
[19] 苑世剑. 现代液压成形技术[M]. 北京:国防工业出版社, 2009:45-50. YUAN S J. Modern hydroforming technology[M]. Beijing:National Defense Industry Press, 2009:45-50(in Chinese).
[20] 吴洪飞, 苑世剑, 王仲仁. 轴压柱壳弹塑性稳定性分析的通用方程推导[J]. 哈尔滨工业大学学报, 2002, 34(1):35-39. WU H F, YUAN S J, WANG Z R. Derivation of general equations for elastoplastic stability of cylindrical shell under axial compression[J]. Journal of Harbin Institute of Technology, 2002, 34(1):35-39(in Chinese).
[21] 胡世光, 陈鹤峥. 板料冷压成形的工程解析[M]. 北京:北京航空航天大学出版社, 2004:49-53. HU S G, CHEN H Z. Engineering analysis of cold pressing sheet metal forming[M]. Beijing:Beijing University of Aeronautics & Astronautics Press, 2004:49-53(in Chinese).
[22] 杨连发, 郭成. 液压胀形薄壁管材料流动应力方程的构建[J]. 西安交通大学学报, 2006, 40(3):332-336. YANG L F, GUO C. Stress strain relationship of tubular metal in hydraulic bulging test[J]. Journal of Xi'an Jiaotong University, 2006, 40(3):332-336(in Chinese).
[23] 林旭华, 陈新度, 吴磊. 数字散斑特性对三维重建精度的影响分析[J]. 组合机床与自动化加工技术, 2021(3):41-44, 48. LIN X H, CHEN X D, WU L. Analysis of the influence of digital speckle characteristics on the accuracy of 3D reconstruction[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2021(3):41-44,48(in Chinese).
[24] WANG Y, GAO Y, LIU Y, et al. Optimal aperture and digital speckle optimization in digital image correlation[J]. Experimental Mechanics, 2021, 61(4):677-684.
[25] SU Y, ZHANG Q C, GAO Z R, et al. Fourier-based interpolation bias prediction in digital image correlation[J]. Optics Express, 2015, 23(15):19242-19260.
[26] 孙轩. 数字图像及其在变形测量中的应用研究[D]. 绵阳:西南科技大学, 2018:18-22. SUN X. The study of digital image and its application in deformation measurement[D]. Mianyang:Southwest University of Science and Technology, 2018:18-22(in Chinese).
[27] BRUCK H A, MCNEILL S R, SUTTON M A, et al. Digital image correlation using Newton-Raphson method of partial differential correction[J]. Experimental Mechanics, 1989, 29(3):261-267.
[28] 高越. 三维数字图像相关法的关键技术及应用研究[D]. 合肥:中国科学技术大学, 2014:26-35. GAO Y. Research on key technologies and applications of three-dimensional digital image correlation[D]. Hefei:University of Science and Technology of China, 2014:26-35(in Chinese).
[29] 唐正宗, 梁晋, 肖振中, 等. 用于三维变形测量的数字图像相关系统[J]. 光学精密工程, 2010, 18(10):2244-2253. TANG Z Z, LIANG J, XIAO Z Z, et al. Digital image correlation system for three-dimensional deformation measurement[J]. Optics and Precision Engineering, 2010, 18(10):2244-2253(in Chinese).
[30] 陈振英. 基于数字图像相关法的应变测量研究[D]. 上海:上海交通大学, 2013:38-50. CHEN Z Y. Strain measurement research based on digital image correlation method[D]. Shanghai:Shanghai Jiao Tong University,2013:38-50(in Chinese).
文章导航

/