X射线聚焦光学在脉冲星探测领域的应用
收稿日期: 2022-11-21
修回日期: 2022-12-09
录用日期: 2022-12-20
网络出版日期: 2023-01-01
基金资助
国家重点研发计划(2017YFB0503300);国家自然科学基金(12175294)
A review of applications of X⁃ray focused optics in field of pulsar detection
Received date: 2022-11-21
Revised date: 2022-12-09
Accepted date: 2022-12-20
Online published: 2023-01-01
Supported by
National Key Research and Development Program(2017YFB0503300);National Natural Science Foundation of China(12175294)
脉冲星是人类20世纪发现的重大天文学事件,X射线脉冲星探测作为天体物理学和空间探测领域的重要分支之一,在基础科学研究和工程应用领域具有极其重要的意义,长期以来被美国、欧洲、日本和中国列入国家重大发展规划。脉冲星探测面临自身辐射流量微弱、空间辐射本底复杂、X射线易散射等难题,特别是毫秒脉冲星的高灵敏度探测极具挑战性。近年来,X射线聚焦光学的快速发展为空间天文学、空间科学、脉冲星计时与导航等领域提供了新方法和新视角。通过回顾半个世纪以来X射线聚焦光学的发展历程,总结了未来脉冲星探测需求,阐述了空间X射线聚焦光学的关键技术、应用情况与发展现状。最后,对X射线聚焦光学技术发展趋势及其在X射线脉冲星探测领域的潜在应用进行展望。
李连升 , 梅志武 , 谢军 , 姜坤 , 石永强 , 曹振 , 左富昌 . X射线聚焦光学在脉冲星探测领域的应用[J]. 航空学报, 2023 , 44(3) : 528286 -528286 . DOI: 10.7527/S1000-6893.2022.28286
Pulsar is a major astronomical event discovered by human beings in the 20th century. X-ray pulsar detection, as one of the important branches of astrophysics and space exploration, plays an important role in the field of basic scientific research and engineering applications, and has long been included in the national major development plan by the United States, Europe, Japan and China. Pulsar detection faces serious problems such as weak self-radiation flow, complex space radiation background, and easy scattering of X-rays, and the high-sensitivity detection of millisecond pulsars is especially extremely challenging. In recent years, the rapid development of X-ray focused optics has provided new methods and perspectives for space astronomy, space science, and pulsar timing and navigation. By reviewing the development process of X-ray focused optics in the past half century, this paper summarizes future pulsar detection demands, and expounds the key technologies, applications and development status of space X-ray focused optics. The future development trend of X-ray focused optical technology and its potential applications in the field of X-ray pulsar detection are also discussed.
1 | LYNE A G, GRAHAM-SMITH F. Pulsar astronomy[M]. 4th ed. Cambridge: Cambridge University Press, 2012. |
2 | NASA. X-ray telescopes - more information[EB/OL]. (2018-12-11) [2022-11-15]. . |
3 | LONGAIR M. Antony Hewish (1924–2021): Radioastronomer who won share of Nobel for role in discovering pulsars[EB/OL]. (2021-09-24) [2022-11-15]. . |
4 | SHEIKH S I. The use of variable celestial X-Ray sources for spacecraft navigation [D]. Maryland: University of Maryland, 2005. |
5 | 姚云峰, 方海燕, 朱金鹏, 等. 北斗卫星导航系统X射线脉冲星可见性分析[J]. 空间控制技术与应用, 2020, 46(6): 1-9. |
YAO Y F, FANG H Y, ZHU J P, et al. Visibility analysis of X-ray pulsar for BeiDou navigation satellite system[J]. Aerospace Control and Application, 2020, 46(6): 1-9 (in Chinese). | |
6 | 梁昊, 詹亚锋, 尹海亮. X射线脉冲星导航系统选星方法研究[J]. 电子与信息学报, 2015, 37(10): 2356-2362. |
LIANG H, ZHAN Y F, YIN H L. Research on pulsars selection for X-ray pulsar navigation system[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2356-2362 (in Chinese). | |
7 | 李连升, 梅志武, 吕政欣, 等. X射线脉冲星导航探测技术发展综述[J]. 兵器装备工程学报, 2017, 38(5): 1-9. |
LI L S, MEI Z W, LYU Z X, et al. Overview of the development of X-ray pulsar navigation detection technology[J]. Journal of Ordnance Equipment Engineering, 2017, 38(5): 1-9 (in Chinese). | |
8 | 左富昌, 梅志武, 邓楼楼, 等. 多层嵌套掠入射光学系统研制及在轨性能评价[J]. 物理学报, 2020, 69(3): 030702. |
ZUO F C, MEI Z W, DENG L L, et al. Development and in-orbit performance evaluation of multi-layered nested grazing incidence optics[J]. Acta Physica Sinica, 2020, 69(3): 030702 (in Chinese). | |
9 | 赵大春. 软X射线掠入射集光系统设计及加工技术研究[D]. 北京: 中国科学院大学, 2016: 43-92. |
ZHAO D C. Study on design and processing technology of soft X-ray grazing incidence light collection system[D]. Beijing: University of Chinese Academy of Sciences, 2016: 43-92 (in Chinese). | |
10 | KIRKPATRICK P, BAEZ A V. Formation of optical images by X-rays[J]. Journal of the Optical Society of America, 1948, 38(9):766–773. |
11 | NASA. International X-ray observatory[EB/OL]. [2022-11-15]. . |
12 | MARSIKOVA V. X-ray optics: Wolter[C]∥Proceedings of the International Workshop on Astronomical X-Ray Optics, 2009. |
13 | NASA. High energy astrophysical observatory series [EB/OL]. (2014-02-06) [2022-11-15]. . |
14 | NASA. The ROSAT mission[EB/OL]. (2001-07-06) [2022-11-15]. . |
15 | NASA. Chandra X-ray observatory[EB/OL]. (2022-07-29) [2022-11-15]. . |
16 | 强鹏飞, 盛立志, 李林森, 等. X射线聚焦望远镜光学设计[J]. 物理学报, 2019, 68(16): 158-163. |
QIANG P F, SHENG L Z, LI L S, et al. Optical design of X-ray focusing telescope[J]. Acta Physica Sinica, 2019, 68(16): 158-163 (in Chinese). | |
17 | NASA. Nuclear spectroscopic telescope array, or NuSTAR. (2012-06-01) [2022-11-15]. . |
18 | SERLEMITSOS P J, SOONG Y, CHAN K W, et al. The X-ray telescope onboard Suzaku[J]. Publications of the Astronomical Society of Japan, 2007, 59(S1): S9-S21. |
19 | NAKAZAWA K, SATO G, KOKUBUN M, et al. Hard X-ray imager onboard hitomi (ASTRO-H)[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2018, 4(2): 021410. |
20 | GENDREAU K C, ARZOUMANIAN Z, ADKINS P W, et al. The Neutron star Interior Composition Explorer (NICER): Design and development[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 9905, Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, 2016: 420-435. |
21 | 黎月明, 杨健, 左富昌, 等. X射线反射镜NiP芯模超精密车削技术研究[J]. 红外与激光工程, 2022, 51(7): 380-386. |
LI Y M, YANG J, ZUO F C, et al. Research on ultra-precision turning technology of NiP-coated mandrel for X-ray mirrors[J]. Infrared and Laser Engineering, 2022, 51(7): 380-386 (in Chinese). | |
22 | BILBRO J. Fabrication of a prototype mirror for AXAF-S[C]∥Space Programs and Technologies Conference and Exhibit. Reston: AIAA, 1993: 4251. |
23 | ATTINA P, ALIPPI E, CASOLI P, et al. Overview of the SAX X-ray instruments development[C]∥SPIE’s 1995 International Symposium on Optical Science, Engineering, and Instrumentation. Proc SPIE 2517, X-Ray and EUV/FUV Spectroscopy and Polarimetry, 1995: 182-208. |
24 | CHAMBURE D D, LAIN R, KATWIJK K V, et al. Lessons learnt from the development of the XMM optics[J]. The International Society for Optical Engineering,1999,3739(16): 2-17. |
25 | PREDEHL P, ANDRITSCHKE R, BABYSHKIN V, et al. eROSITA on SRG [C]∥Proceedings of SPIE, 2016, 9905: 99051K. |
26 | 李连升, 梅志武, 邓楼楼, 等. 掠入射聚焦型X射线脉冲星望远镜装配误差分析与在轨验证[J]. 机械工程学报, 2018, 54(11): 49-60. |
LI L S, MEI Z W, DENG L L, et al. Assembly error analysis and in-orbit verification of grazing incidence focusing X-ray pulsar telescope[J]. Journal of Mechanical Engineering, 2018, 54(11): 49-60 (in Chinese). | |
27 | 祝宇轩. EP卫星FXT聚焦镜研究[D]. 长春: 吉林大学, 2022: 101-105. |
ZHU Y X. The study on X-ray focusing mirror of follow-up X-ray telescope on board Einstein probe[D]. Changchun: Jilin University, 2022: 101-105 (in Chinese). | |
28 | CHRISTE S, GLESENER L, BUITRAGO-CASAS C, et al. FOXSI-2: Upgrades of the focusing optics X-ray solar imager for its second flight[J]. Journal of Astronomical Instrumentation, 2016, 5(1): 1640005. |
29 | CITTERIO O, CIVITANI M M, ARNOLD J, et al. Progress on precise grinding and polishing of thin glass monolithic shell (towards WFXT)[C]∥SPIE Optical Engineering + Applications. Proc SPIE 8147, Optics for EUV, X-Ray, and Gamma-Ray Astronomy V, 2011: 397-407. |
30 | ANGEL J R P. Lobster eyes as X-ray telescopes[J]. The Astrophysical Journal Letters, 1979, 233: 364. |
31 | 董联庆, 杨立欣, 苏云, 等. 空间X射线探测技术发展新趋势[J]. 航天返回与遥感, 2022, 43(4): 67-77. |
DONG L Q, YANG L X, SU Y, et al. Development trend of the space X-ray detection technology[J]. Spacecraft Recovery & Remote Sensing, 2022, 43(4): 67-77 (in Chinese). | |
32 | BELFIORE A, ESPOSITO P, PINTORE F, et al. Diffuse X-ray emission around an ultraluminous X-ray pulsar[J]. Nature Astronomy, 2020, 4(2): 147-152. |
33 | COLLIER M R, PORTER F S, SIBECK D G, et al. Invited Article: First flight in space of a wide-field-of-view soft X-ray imager using lobster-eye optics: Instrument description and initial flight results[J]. The Review of Scientific Instruments, 2015, 86(7): 071301. |
34 | BERNARDINI M G, XIE F, SIZUN P, et al. Scientific prospects for spectroscopy of the Gamma-ray burst prompt emission with SVOM[J]. Experimental Astronomy, 2017, 44(1): 113-127. |
35 | ISHIKAWA K, EZOE Y, NUMAZAWA M, et al. 12-inch X-ray optics based on MEMS process[J]. Microsystem Technologies, 2017, 23(7): 2815-2821. |
36 | FUKUSHIMA A, ISHI D, EZOE Y, et al. Improvement of imaging performance of silicon micropore X-ray optics by ultra long-term annealing[J]. Optics Express, 2022, 30(14): 25195-25207. |
37 | BENKHOFF J, MURAKAMI G, BAUMJOHANN W, et al. BepiColombo - mission overview and science goals[J]. Space Science Reviews, 2021, 217(8): 90. |
38 | DELLA MONICA FERREIRA D, JAKOBSEN A C, MASSAHI S, et al. X-ray mirror development and testing for the ATHENA mission[C]∥ SPIE Proceedings Space Telescopes and Instrumentation, 2016. |
39 | COSINE. Cuatom measurement solution for space, air, field and factory[EB/OL]. . |
40 | ZHANG W W, ALLGOOD K D, BISHACH M P, et al. High-resolution, lightweight, and lowcost X-ray optics for the Lynx observatory[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2019, 5(2): 021012. |
41 | WANG Y D, ZHANG S N, GE M, et al. Fast on-orbit pulse phase estimation of X-ray crab pulsar for XNAV flight experiments[J]. IEEE Transactions on Aerospace and Electronic System, 2022, doi: 10.1109/TAES.2022.3216822 . |
/
〈 |
|
〉 |