荧光油膜速度场的自适应快速光流解法
收稿日期: 2022-09-26
修回日期: 2022-11-14
录用日期: 2022-12-12
网络出版日期: 2023-01-01
基金资助
国家自然科学基金(11872069)
Adaptive fast optical flow solution to velocity field of fluorescent oil film
Received date: 2022-09-26
Revised date: 2022-11-14
Accepted date: 2022-12-12
Online published: 2023-01-01
Supported by
National Natural Science Foundation of China(11872069)
现有光流法解算基于荧光油膜的摩阻测量方程耗时长,制约了荧光油膜试验技术在生产型风洞中的推广应用。为此,提出了荧光油膜速度场的空间自适应快速光流解法,一方面通过推导构造共轭迭代式,较现有光流法的雅可比矩阵分割迭代式,有更小的存储量、更高的收敛性与稳定性;另一方面结合荧光油膜图像的灰度梯度信息,对图像进行空间自适应降采样进行共轭迭代快速获得大流动结构,再升到满分辨率迭代和全局优化,即可准确捕捉到精细的流动结构,大幅提高荧光油膜速度场的解算速度。仿真实验表明:在给定收敛误差限下本算法较现有光流法计算速度提升26.6%,在相同预设迭代次数下,平均误差减小1.4%,最大误差减小2.3%。多个高速风洞的油膜试验结果表明:本算法测得壁面流动现象正确、流谱清晰精细,较现有光流法计算速度平均提升了23%,优势明显,工程应用价值大。
蔡章博 , 张征宇 , 余皓 , 占书恒 . 荧光油膜速度场的自适应快速光流解法[J]. 航空学报, 2024 , 45(7) : 128047 -128047 . DOI: 10.7527/S1000-6893.2022.28047
The existing optical flow methods takes a long time to solve the friction measurement equations based on the fluorescent oil film, restricting the application of fluorescent oil film tests in the wind tunnel. Therefore, a spatially adaptive fast optical flow method for the fluorescent oil film velocity field is proposed. The conjugate iterative formula of the optical flow is constructed, with a smaller storage capacity, higher convergence and stability than those of theJacobian-like matrix segmentation iteration used by the existing optical flow methods. On the other hand, based on the grayscale gradients of a given fluorescent oil film image, the prominent flow structures can be quickly obtained by a spatially adaptive down sampling method, then up sampling to obtain the refined flow structures by conjugate iteration and executing global optimization, and the speed of solving the velocity field of the fluorescent oil film is significantly improved. Simulation examples show that the calculation speed of this algorithm is 26.6% higher than that of the existing optical flow method under the given convergence error limits, the average errors are reduced by 1.4%, and the maximum error is reduced by 2.3% under the same preset number of iterations. The results of the oil film tests in the wind tunnel show that the wall flow phenomenon measured by this algorithm is correct, and the flow spectrum is clear and precise. Compared with the existing optical flow method, this new method has a speed increase of 23% on average, exhibiting important application value in engineering.
1 | 沈鹏飞, 刘朋欣, 孙东, 等. 马赫6柱-裙构型激波/湍流边界层干扰摩阻统计特性[J]. 航空学报, 2022, 43(1): 626005. |
SHEN P F, LIU P X, SUN D, et al. Statistical characteristics of skin friction of shock wave/turbulent boundary layer interaction in hollow cylinder-flare configuration at Mach 6[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 626005 (in Chinese). | |
2 | 赵欢, 高正红, 夏露. 高速自然层流翼型高效气动稳健优化设计方法[J]. 航空学报, 2022, 43(1): 124894. |
ZHAO H, GAO Z H, XIA L. Efficient robust aerodynamic design optimization method for high-speed NLF airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 124894 (in Chinese). | |
3 | HAKKINEN R J. Reflections on fifty years of skin friction measurement[C]∥24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston: AIAA, 2004. |
4 | 邹易峰, 张征宇, 王学渊, 等. 风洞试验模型表面的荧光油膜路径运动速度测量[J]. 航空学报, 2019, 40(6): 122595. |
ZOU Y F, ZHANG Z Y, WANG X Y, et al. Velocity measurement of fluorescent oil film path movement on wind tunnel testing model surface[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6): 122595 (in Chinese). | |
5 | 邹镇, 尹东, 刘绪鹏, 等. 油流法流场显示技术研究及应用[J]. 计测技术, 2017, 37(): 350-352. |
ZOU Z, YIN D, LIU X P, et al. Research and application of oil flow method flow field display technology [J]. Metrology & Measurement Technology, 2017, 37(S1): 350-352 (in Chinese). | |
6 | 李鹏. 全局表面摩擦应力直接测量技术研究[D]. 南京: 南京航空航天大学, 2012: 44-70. |
LI P. Studies of direct measurement techniques about global skin friction[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 44-70 (in Chinese). | |
7 | HORN B K P, SCHUNCK B G. Determining optical flow[J]. Artificial Intelligence, 1981, 17(1-3): 185-203. |
8 | WILDES R P, AMABILE M J, LANZILLOTTO A M, et al. Recovering estimates of fluid flow from image sequence data[J]. Computer Vision and Image Understanding, 2000, 80(2): 246-266. |
9 | LIU T S, SHEN L X. Fluid flow and optical flow[J]. Journal of Fluid Mechanics, 2008, 614: 253-291. |
10 | ZHONG H J, WOODIGA S, WANG P, et al. Skin-friction topology of wing–body junction flows[J]. European Journal of Mechanics - B, 2015, 53: 55-67. |
11 | LIU T S, MERAT A, MAKHMALBAF M H M, et al. Comparison between optical flow and cross-correlation methods for extraction of velocity fields from particle images[J]. Experiments in Fluids, 2015, 56(8): 166. |
12 | 黄湛, 王宏伟, 魏连风, 等. 基于荧光油膜的全局表面摩阻测量技术研究[J]. 空气动力学学报, 2016, 34(3): 373-378, 403. |
HUANG Z, WANG H W, WEI L F, et al. Research of global skin friction measurement based on fluorescent oil film[J]. Acta Aerodynamica Sinica, 2016, 34(3): 373-378, 403 (in Chinese). | |
13 | 王鹏, 赵荣奂, 衷洪杰, 等. 三维荧光油流技术的试验研究[J]. 空气动力学学报, 2017, 35(1): 146-150. |
WANG P, ZHAO R H, ZHONG H J, et al. Experimental investigations of 3D luminescent oil flow techniques[J]. Acta Aerodynamica Sinica, 2017, 35(1): 146-150 (in Chinese). | |
14 | 邵绪强, 杨艳, 刘艺林. 流体运动估计光流算法研究综述[J]. 中国图象图形学报, 2021, 26(2): 355-367. |
SHAO X Q, YANG Y, LIU Y L. Review of optical flow algorithms in fluid motion estimation[J]. Journal of Image and Graphics, 2021, 26(2): 355-367 (in Chinese). | |
15 | LIU T S, MONTEFORT J, WOODIGA S, et al. Global luminescent oil-film skin-friction meter[J]. AIAA Journal, 2008, 46(2): 476-485. |
16 | LIU T S. Global skin friction measurements and interpretation[J]. Progress in Aerospace Sciences, 2019, 111: 100584. |
17 | LIU T S, WOODIGA S, MONTEFORT J, et al. Global skin friction diagnostics in separated flows using luminescent oil[J]. Journal of Flow Visualization and Image Processing, 2009, 16(1): 19-39. |
18 | 李庆扬, 王能超, 易大义. 数值分析[M]. 5版. 北京: 清华大学出版社, 2008. |
LI Q Y, WANG N C, YI D Y. Numerical analysis[M]. 5th ed. Beijing: Tsinghua University Press, 2008 (in Chinese). | |
19 | Sevilla-Lara L, Sun D, Jampani V, et al. Optical Flow with Semantic Segmentation and Localized Layers[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE. 2016: 3889-3898. |
20 | NOCEDAL J, WRIGHT S J. Numerical optimization[M]. 2nd ed. New York: Springer, 2006. |
21 | SEONG J H, SONG M S, NUNEZ D, et al. Velocity refinement of PIV using global optical flow[J]. Experiments in Fluids, 2019, 60(11): 174. |
22 | SUN D Q, ROTH S, BLACK M J. Secrets of optical flow estimation and their principles[C]∥2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2010: 2432-2439. |
23 | CHEN H, BOHUSH R P, CHEN C, et al. Estimation of people movement in video based on optical flow block method and motion maps[J]. Pattern Recognition and Image Analysis, 2021, 31(2): 261-270. |
24 | BROX T, BRUHN A, PAPENBERG N, et al. High accuracy optical flow estimation based on a theory for warping[M]∥Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2004: 25-36. |
25 | LIU T S. OpenOpticalFlow: An open source program for extraction of velocity fields from flow visualization images[J]. Journal of Open Research Software, 2017, 5(1):29-56. |
26 | 张征宇, 黄叙辉, 尹疆, 等. 风洞试验中的视频测量技术现状与应用综述[J]. 空气动力学学报, 2016, 34(1): 70-79. |
ZHANG Z Y, HUANG X H, YIN J, et al. Research status and application of videogrammetric measurement techniques for wind tunnel testing[J]. Acta Aerodynamica Sinica, 2016, 34(1): 70-79 (in Chinese). | |
27 | 孙岩, 张征宇, 黄诗捷, 等. 风洞试验中模型迎角视觉测量技术研究[J]. 航空学报, 2013, 34(1): 1-7. |
SUN Y, ZHANG Z Y, HUANG S J, et al. Vision measurement technology research for model angle of attack in wind tunnel tests[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1): 1-7 (in Chinese). |
/
〈 |
|
〉 |