硅橡胶基防热涂层烧蚀和热响应特性预报方法
收稿日期: 2022-10-19
修回日期: 2022-11-03
录用日期: 2022-12-23
网络出版日期: 2022-12-27
基金资助
国家自然科学基金(12172296);上海市空间飞行器机构重点实验室开放课题(2021XGD)
Prediction method of ablation and thermal response for a thermal protection coating with silicone rubber
Received date: 2022-10-19
Revised date: 2022-11-03
Accepted date: 2022-12-23
Online published: 2022-12-27
Supported by
National Natural Science Foundation of China(12172296);Open Project of Shanghai Key Laboratory of Spacecraft Mechanism(2021XGD)
系统地开展了高速飞行器大面积热防护部位用轻质高效防热涂层烧蚀机制与性能预报方法研究。利用石英灯辐射加热设备,开展了硅橡胶基涂层的高温热环境考核试验,分析了高温下材料微结构演化规律,阐明了烧蚀防热机制。考虑材料烧蚀、相变、扩散等过程引起的多种吸热机制,基于质量和能量守恒原理,结合边界层空气动力学关系和材料内部热传导方程,建立了硅橡胶基涂层的烧蚀和热响应耦合预报模型。模拟了硅橡胶基防热涂层典型热环境工况下的表面烧蚀和内部传热过程,获得了材料内部的热响应特性,分析了硅橡胶基涂层的防热、隔热性能,预报值与试验值吻合较好,证明了模型的准确性。本模型可用于烧蚀型防热涂层精细化设计与性能预示。
关键词: 防热涂层; 硅橡胶; 烧蚀机制; 热分解特性; 烧蚀-热响应耦合模型
时圣波 , 雷宝 , 张云天 , 胡励 , 李茂源 , 梁军 . 硅橡胶基防热涂层烧蚀和热响应特性预报方法[J]. 航空学报, 2023 , 44(23) : 428141 -428141 . DOI: 10.7527/S1000-6893.2022.28141
The prediction method of both ablation mechanism and properties of light-weight, high-efficient thermal protection coatings for moderate thermal environment of high speed aerospace vehicles are systematically studied. The high-temperature thermal environment test of a thermal protection coating with silicone rubber was carried out using quartz lamp radiation heating equipment. The evolution law of microstructure for the material under high temperature was analyzed. The ablation and thermal protection mechanism were clarified. Based on the principles of mass and energy conservation, a coupled prediction model of ablation and thermal response for thermal protection coatings with silicone rubber was established by combining with aerodynamic relationship of boundary layer and heat conduction equation of internal materials. In the model, various heat absorption mechanisms caused by the process of ablation, phase transition and gas diffusion were considered. The surface ablation and heat transfer of the thermal protection coating with silicone rubber were simulated under a typical heat flux condition. The thermal responses of the material were obtained, and the thermal protection and insulation properties of the thermal protection coating with silicone rubber were analyzed. Both the mass loss rate and back temperature from the developed model were in good agreement with the experimental results, which validated the coupling prediction model. This model has the potential to the applications of elaborated design and property prediction of ablative thermal protection coatings.
1 | 赵瑾, 孙向春, 张俊, 等. 热防护材料气固界面传热传质问题研究进展[J]. 航空学报, 2022, 43(10): 527577. |
ZHAO J, SUN X C, ZHANG J, et al. Research advances on heat and mass transfer coupling effect at gas-solid interface for thermal protection materials[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527577 (in Chinese). | |
2 | 时圣波, 唐硕, 梁军. 临近空间飞行器防隔热/承载一体化热结构设计及力/热行为[J]. 装备环境工程, 2020, 17(1): 36-42. |
SHI S B, TANG S, LIANG J. Design and themomechanical behavior of full-composite structurally integrated thermal protection structure for near space vehicles[J]. Equipment Environmental Engineering, 2020, 17(1): 36-42 (in Chinese). | |
3 | PICHON T, SOYRIS P, FOUCAULT A, et al. Thermal protection systems technologies for re-entry vehicles [C]∥ Proceedings of 14th AIAA/AHI Space Planes & Hypersonic Systems & Technologies Conference. Reston: AIAA, 2006: AIAA 2006-7950. |
4 | 解维华, 韩国凯, 孟松鹤, 等. 返回舱/空间探测器热防护结构发展现状与趋势[J]. 航空学报, 2019, 40(8): 022792. |
XIE W H, HAN G K, MENG S H, et al. Development status and trend of thermal protection structure for return capsules and space probes[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 022792 (in Chinese). | |
5 | 周印佳, 张志贤, 付新卫, 等. 再入飞行器烧蚀热防护一体化计算方法[J]. 航空学报, 2021, 42(7): 124520. |
ZHOU Y J, ZHANG Z X, FU X W, et al. Integrated computing method for ablative thermal protection system of reentry vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124520 (in Chinese). | |
6 | 艾邦成, 陈思员, 韩海涛, 等. 疏导式热防护结构传热极限特性[J]. 航空学报, 2021, 42(2): 623989. |
AI B C, CHEN S Y, HAN H T, et al. Heat transfer limit characteristics of integrated dredging thermal protection structure[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 623989 (in Chinese). | |
7 | UYANNA O, NAJAFI H. Thermal protection systems for space vehicles: A review on technology development, current challenges and future prospects[J]. Acta Astronautica, 2020, 176: 341-356. |
8 | 周星光, 柳世灵, 王通, 等. SiO2气凝胶隔热性能的影响因素研究[J]. 装备环境工程, 2022, 19(5): 94-99. |
ZHOU X G, LIU S L, WANG T, et al. Influence factor of thermal insulation performance of SiO2 aerogel[J]. Equipment Environmental Engineering, 2022, 19(5): 94-99 (in Chinese). | |
9 | 郑凯, 饶炜, 向艳超, 等. 火星着陆发动机气凝胶材料热防护装置设计[J]. 航空学报, 2022, 43(3): 626568. |
ZHENG K, RAO W, XIANG Y C, et al. Design of aerogel-based thermal protector for Mars landing engine[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 626568 (in Chinese). | |
10 | POOVATHINGAL S, STERN E C, NOMPELIS I, et al. Nonequilibrium flow through porous thermal protection materials, Part II: oxidation and pyrolysis[J]. Journal of Computational Physics, 2019, 380: 427-441. |
11 | NATALI M, KENNY J M, TORRE L. Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices: A review[J]. Progress in Materials Science, 2016, 84: 192-275. |
12 | YANG D, ZHANG W, JIANG B Z, et al. Silicone rubber ablative composites improved with zirconium carbide or zirconia[J]. Composites Part A: Applied Science and Manufacturing, 2013, 44: 70-77. |
13 | POLSGROVE T, PERCY T K, SUTHERLIN S, et al. Human Mars entry, descent, and landing architecture study: deployable decelerators[C]∥ Proceedings of the 2018 AIAA SPACE and Astronautics Forum and Exposition. Reston: AIAA, 2018: AIAA 2018-5191. |
14 | 王百亚, 王秀云, 张炜. 一种航天器用外热防护涂层材料研究[J]. 固体火箭技术, 2005, 28(3): 216-218, 227. |
WANG B Y, WANG X Y, ZHANG W. Study on an external thermal protection coating material for spacecraft[J]. Journal of Solid Rocket Technology, 2005, 28(3): 216-218, 227 (in Chinese). | |
15 | FRIEDMAN H L. Kinetics and gaseous products of thermal decomposition of polymers[J]. Journal of Macromolecular Science: Part A - Chemistry, 1967, 1(1): 57-79. |
16 | KISSINGER H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29(11): 1702-1706. |
17 | FLYNN J H, WALL L A. A quick, direct method for the determination of activation energy from thermogravimetric data[J]. Journal of Polymer Science Part B: Polymer Letters, 1966, 4(5): 323-328. |
18 | COATS A W, REDFERN J P. Kinetic parameters from thermogravimetric data[J]. Nature, 1964, 201(4914): 68-69. |
19 | BALAJI R, SASIKUMAR M, ELAYAPERUMAL A. Thermal, thermo oxidative and ablative behavior of cenosphere filled ceramic/phenolic composites[J]. Polymer Degradation and Stability, 2015, 114: 125-132. |
20 | YU B, TILL V, THOMAS K. Modeling of thermo-physical properties for FRP composites under elevated and high temperature[J]. Composites Science and Technology, 2007, 67(15-16): 3098-3109. |
21 | TORRE L, KENNY J M, MAFFEZZOLI A M. Degradation behaviour of a composite material for thermal protection systems, Part II: Process simulation[J]. Journal of Materials Science, 1998, 33(12): 3145-3149. |
22 | BAHRAMIAN A R, KOKABI M, FAMILI M H N, et al. Ablation and thermal degradation behaviour of a composite based on resol type phenolic resin: Process modeling and experimental[J]. Polymer, 2006, 47(10): 3661-3673. |
23 | WANG Y Q, RISCH T K, KOO J H. Assessment of a one-dimensional finite element charring ablation material response model for phenolic-impregnated carbon ablator[J]. Aerospace Science and Technology, 2019, 91: 301-309. |
24 | 王湘阳, 年永乐, 刘娜, 等. 考虑C-SiO2反应的新型硅基材料烧蚀分析模型[J]. 化工学报, 2021, 72(6): 3270-3277. |
WANG X Y, NIAN Y L, LIU N, et al. Novel ablation model of silica-reinforced composites considering C-SiO2 reaction[J]. CIESC Journal, 2021, 72(6): 3270-3277 (in Chinese). | |
25 | 王湘阳. 炭化材料烧蚀机理与热导率预测方法研究[D]. 合肥: 中国科学技术大学, 2021. |
WANG X Y. Study on ablation mechanism and thermal conductivity inversion of charring material[D].Hefei: University of Science and Technology of China, 2021 (in Chinese). | |
26 | SHI S B, LEI B, LI M Y, et al. Thermal decomposition behavior of a thermal protection coating composite with silicone rubber: Experiment and modeling[J]. Progress in Organic Coatings, 2020, 143: 105609. |
/
〈 |
|
〉 |