综述

航天器轨道递推及Lambert问题计算方法综述

  • 冯浩阳 ,
  • 汪雪川 ,
  • 岳晓奎 ,
  • 王昌涛
展开
  • 1.西北工业大学 航天飞行动力学技术国家级重点实验室,西安 710072
    2.西北工业大学 航天学院,西安 710072
.E-mail: xcwang@nwpu.edu.cn

收稿日期: 2022-09-20

  修回日期: 2022-10-25

  录用日期: 2022-12-14

  网络出版日期: 2022-12-27

基金资助

国家自然科学基金(11972026);中央高校基本科研业务费专项资金(3102019HTQD014);西北工业大学博士论文创新基金(CX2022005)

A survey of computational methods for spacecraft orbit ropagation and Lambert problems

  • Haoyang FENG ,
  • Xuechuan WANG ,
  • Xiaokui YUE ,
  • Changtao WANG
Expand
  • 1.National Key Laboratory of Aerospace Flight Dynamics,Northwestern Polytechnical University,Xi’an 710072,China
    2.School of Astronautics,Northwestern Polytechnical University,Xi’an 710072,China
E-mail: xcwang@nwpu.edu.cn

Received date: 2022-09-20

  Revised date: 2022-10-25

  Accepted date: 2022-12-14

  Online published: 2022-12-27

Supported by

National Natural Science Foundation of China(11972026);Fundamental Research Funds for the Central Universities(3102019HTQD014);Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX2022005)

摘要

航天器轨道计算是航天动力学与控制领域的基础问题,未来空间任务对轨道计算的精度和实时性要求更高,研究新型高性能空间轨道计算方法对于中国未来航天工程具有重大应用价值。概述了空间轨道计算的研究背景,系统梳理了求解轨道递推问题和Lambert问题的各类方法,介绍了各类方法的求解思想和优缺点,对轨道计算方法的发展趋势进行展望,为具体任务中轨道计算方法的选取提供参考,也为新型高性能空间轨道计算方法的设计提供启发。

本文引用格式

冯浩阳 , 汪雪川 , 岳晓奎 , 王昌涛 . 航天器轨道递推及Lambert问题计算方法综述[J]. 航空学报, 2023 , 44(13) : 28027 -028027 . DOI: 10.7527/S1000-6893.2022.28027

Abstract

Spacecraft orbit computation is a fundamental problem in the field of aerospace dynamics and control. Future space missions put forward higher demands for more accurate and real-time orbit computational methods. The research on new orbit computational methods with higher performances has significant application value for future aerospace engineering of China. This paper summarizes the research background of space orbit computation and then gives a systematic review of various types of computational methods for solving orbit propagation and Lambert problems. The advantages and disadvantages of these methods, as well as the development tendency of orbit computational methods are discussed. This paper can provide references for choosing suitable computational methods in specific aerospace tasks, as well as inspirations for designing novel and high-performance orbit computational methods.

参考文献

1 孟占峰, 高珊, 盛瑞卿. 嫦娥五号月球轨道交会导引策略设计[J]. 航空学报202344(5): 326584.
  MENG Z F, GAO S, SHENG R Q. Lunar orbit rendezvous phasing design for Chang’e-5 mission[J]. 航空学报202344(5): 326584 (in Chinese).
2 FREY S, COLOMBO C. Transformation of satellite breakup distribution for probabilistic orbital collision hazard analysis[J]. Journal of Guidance, Control, and Dynamics202044(1): 88-105.
3 ROMANO M, COLOMBO C, PéREZ J M S. Verification of planetary protection requirements with symplectic methods and Monte Carlo line sampling[C]∥68th International Astronautical Congress. Adelaide: IAF, 2017: 7574-7588.
4 肖业伦. 航天器飞行动力学原理[M]. 北京:宇航出版社,1995:57-59.
  XIAO Y L. Principles of spacecraft flight dynamics[M]. Beijing: China Astronautic Publishing House, 1995: 57-59 (in Chinese).
5 INCE E L. Ordinary differential equations[M]. New York: Dover Publications, 1956: 63-66.
6 BAI X L. Modified Chebyshev-Picard iteration methods for solution of initial value and boundary value problems[D]. College Station: Texas A&M University, 2010: 161-162.
7 PARKER G E, SOCHACKI J S. Implementing the Picard iteration[J]. Neural, Parallel & Scientific Computations, 19964(1): 97–112.
8 LARA M. Earth satellite dynamics by Picard iterations[DB/OL]. arXiv preprint: 2205.04310, 2022.
9 ADOMIAN G. Solving frontier problems of physics: The decomposition method[M]. Dordrecht: Kluwer Academic Publishers, 1994:6-17.
10 刘俊英. 几个非线性方程的Adomian近似解析解[D]. 呼和浩特: 内蒙古师范大学, 2010: 3-8.
  LIU J Y. Adomian approximate analytic solutions of several nonlinear equations[D]. Hohhot: Inner Mongolia Normal University, 2010: 3-8 (in Chinese).
11 GABET L. The theoretical foundation of the Adomian method[J]. Computers & Mathematics With Applications199427(12): 41-52.
12 HE C Y, YANG Y, CARTER B, et al. Nonlinear uncertainty propagation of orbital mechanics subject to stochastic error in atmospheric mass density models[J], Trans. JSASS Aerospace Tech. Japan201714(31): 1-8.
13 FEHLBERG E. Low-order classical Runge-Kutta fomulas with stepsize control and their application to some heat transfer problems: NASA-TR-R-315[R]. Washington, D.C.: NASA, 1969.
14 FILIPPI S, GR?F J. New Runge–Kutta–Nystr?m formula-pairs of order 8(7), 9(8), 10(9) and 11(10) for differential equations of the form y″= fx, y)[J]. Journal of Computational and Applied Mathematics198614(3): 361-370.
15 FOX K. Numerical integration of the equations of motion of celestial mechanics[J]. Celestial Mechanics198433(2): 127-142.
16 BERRY M M, HEALY L M. Implementation of Gauss–Jackson integration for orbit propagation[J]. The Journal of the Astronautical Sciences200452(3): 331-357.
17 罗志才, 周浩, 钟波, 等. Gauss-Jackson积分器算法分析与验证[J]. 武汉大学学报·信息科学版201338(11): 1364-1368.
  LUO Z C, ZHOU H, ZHONG B, et al. Analysis and validation of Gauss-Jackson integral algorithm[J]. Geomatics and Information Science of Wuhan University201338(11): 1364-1368 (in Chinese).
18 余彪, 范东明, 游为, 等. GRACE重力反演中的轨道数值积分方法分析[J]. 宇航学报201738(3): 253-261.
  YU B, FAN D M, YOU W, et al. Analysis of orbit numerical integration methods in Earth’s gravitational field recovery by GRACE[J]. Journal of Astronautics201738(3): 253-261 (in Chinese).
19 SüLI E, MAYERS D F. An introduction to numerical analysis[M]. Cambridge: Cambridge University Press, 2003: 329-331.
20 MONTENBRUCK O, GILL E, LUTZE F H. Satellite orbits: models, methods, and applications[J]. Applied Mechanics Reviews200255(2): B27-B28.
21 SHAMPINE L F, REICHELT M W. The MATLAB ODE suite[J]. SIAM Journal on Scientific Computing199718(1): 1-22.
22 黄国强, 陆宇平, 南英. 飞行器轨迹优化数值算法综述[J]. 中国科学: 技术科学201242(9): 1016-1036.
  HUANG G Q, LU Y P, NAN Y. Overview of numerical algorithms for aircraft trajectory optimization[J]. Scientia Sinica (Technologica)201242(9): 1016-1036 (in Chinese).
23 崔乃刚, 郭冬子, 李坤原, 等. 飞行器轨迹优化数值解法综述[J]. 战术导弹技术2020(5): 37-51, 75.
  CUI N G, GUO D Z, LI K Y, et al. A survey of numerical methods for aircraft trajectory optimization[J]. Tactical Missile Technology2020(5): 37-51, 75 (in Chinese).
24 EL-BAGHDADY G I, EL-AZAB M S. Chebyshev-Gauss-Lobatto Pseudo-spectral method for one-dimensional advection-diffusion equation with variable coefficients[J]. Sohag Journal of Mathematics20163(1): 7-14.
25 WU B L, WANG D W, POH E K, et al. Nonlinear optimization of low-thrust trajectory for satellite formation: Legendre pseudospectral approach[J]. Journal of Guidance, Control, and Dynamics200932(4): 1371-1381.
26 雍恩米, 唐国金, 陈磊. 基于Gauss伪谱方法的高超声速飞行器再入轨迹快速优化[J]. 宇航学报200829(6): 1766-1772.
  YONG E M, TANG G J, CHEN L. Rapid trajectory optimization for hypersonic reentry vehicle via Gauss pseudospectral method[J]. Journal of Astronautics200829(6): 1766-1772 (in Chinese).
27 EIDE J D, HAGER W W, RAO A V. Modified Legendre-Gauss-Radau collocation method for optimal control problems with nonsmooth solutions[J]. Journal of Optimization Theory and Applications2021191(2): 600-633.
28 GARG D, PATTERSON M A, FRANCOLIN C, et al. Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method[J]. Computational Optimization and Applications201149(2): 335-358.
29 BOYD J P. Chebyshev and Fourier spectral methods[M]. 2nd ed. New York: Dover Publications, 2000:1-126.
30 CHEN Q F, ZHANG Y D, LIAO S Y, et al. Newton–kantorovich/pseudospectral solution to perturbed astrodynamic two-point boundary-value problems[J]. Journal of Guidance, Control, and Dynamics201336(2): 485-498.
31 GARG D, PATTERSON M, HAGER W W, et al. A unified framework for the numerical solution of optimal control problems using pseudospectral methods[J]. Automatica201046(11): 1843-1851.
32 FAHROO F, ROSS I M. Advances in pseudospectral methods for optimal control: AIAA-2008-7309[R]. Reston: AIAA, 2008.
33 曹喜滨, 张相宇, 王峰. 采用Gauss伪谱法的小推力日-火Halo轨道转移优化设计[J]. 宇航学报201334(8): 1047-1054.
  CAO X B, ZHANG X Y, WANG F. Optimization of low-thrust transfer trajectory for the Sun-Mars halo orbit based on Gauss pseudospectral method[J]. Journal of Astronautics201334(8): 1047-1054 (in Chinese).
34 董凯凯, 罗建军, 马卫华, 等. 非合作目标交会的双层MPC全局轨迹规划控制[J]. 航空学报202142(11): 524903.
  DONG K K, LUO J J, MA W H, et al. Global trajectory planning and control of rendezvous of non-cooperative targets based on double-layer MPC[J]. Acta Aeronautica et Astronautica Sinica202142(11): 524903 (in Chinese).
35 徐少兵, 李升波, 成波. 最优控制问题的Legendre伪谱法求解及其应用[J]. 控制与决策201429(12): 2113-2120.
  XU S B, LI S B, CHENG B. Theory and application of Legendre pseudo-spectral method for solving optimal control problem[J]. Control and Decision201429(12): 2113-2120 (in Chinese).
36 FAHROO F, ROSS I M. On discrete-time optimality conditions for pseudospectral methods: AIAA-2006-6304[R]. Reston: AIAA, 2006.
37 HUNTINGTON G T. Advancement and analysis of a Gauss pseudospectral transcription for optimal control problems[D]. Cambridge: Massachusetts Institute of Technology, 2007: 115-146.
38 唐国金, 罗亚中, 雍恩米. 航天器轨迹优化理论、方法及应用[M]. 北京: 科学出版社, 2012: 144-190.
  TANG G J, LUO Y Z, YONG E M. Theory, method and application of spacecraft trajectory optimization[M]. Beijing: Science Press, 2012: 144-190 (in Chinese).
39 BAI X L, JUNKINS J L. Modified Chebyshev-Picard iteration methods for orbit propagation[J]. The Journal of the Astronautical Sciences201158(4): 583-613.
40 WANG X C, YUE X K, DAI H H, et al. Feedback-accelerated Picard iteration for orbit propagation and Lambert’s problem[J]. Journal of Guidance, Control, and Dynamics201740(10): 2442-2451.
41 WANG X C. Combination of the variational iteration method and numerical algorithms for nonlinear problems[J]. Applied Mathematical Modelling202079: 243-259.
42 BAI X L, JUNKINS J L. Modified Chebyshev-Picard iteration methods for solution of boundary value problems[J]. The Journal of the Astronautical Sciences201158(4): 615-642.
43 HA S N. A nonlinear shooting method for two-point boundary value problems[J]. Computers & Mathematics With Applications200142(10-11): 1411-1420.
44 KELLER H B. Numerical solution of two point boundary value problems[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1976.
45 伍佩钰. 非线性方程组的非精确Broyden方法[D]. 长沙: 长沙理工大学, 2017: 1-10.
  WU P Y. Inexact broyden methods for solving nonlinear equations[D]. Changsha: Changsha University of Science & Technology, 2017: 1-10 (in Chinese).
46 安邦, 郭艺丹, 赵磊. 基于Broyden秩1算法的磁浮列车再生制动分析[J]. 中国安全科学学报201828(S1): 17-21.
  AN B, GUO Y D, ZHAO L. Analysis of regenerative braking of maglev train based on Broyden rank 1 algorithm[J]. China Safety Science Journal201828(S1): 17-21 (in Chinese).
47 范文亮, 刘丞, 李正良. 基于HLRF法与修正对称秩1方法的改进可靠度方法[J]. 工程力学202239(9): 1-9.
  FAN W L, LIU C, LI Z L. Improved reliability method based on HLRF and modified symmetric rank 1 method[J]. Engineering Mechanics202239(9): 1-9 (in Chinese).
48 LI D H, FUKUSHIMA M. A globally and superlinearly convergent Gauss: Newton-based BFGS method for symmetric nonlinear equations[J]. SIAM Journal on Numerical Analysis199937(1): 152–172.
49 DENNIS J E, MORé J J. A characterization of superlinear convergence and its application to Quasi-Newton methods[J]. Mathematics of Computation197428(126): 549-560.
50 梁雨婷, 谭毅, 程楠, 等. 一种混合算法求解多体问题下行星际转移轨道[J]. 计算机与数字工程201038(4): 15-17, 29.
  LIANG Y T, TAN Y, CHENG N, et al. An hybrid method for interplanetary transfer trajectory design in multibody problem[J]. Computer & Digital Engineering201038(4): 15-17, 29 (in Chinese).
51 张洪波, 郑伟, 汤国建. 采用打靶法设计考虑地球扁率的机动轨道[J]. 宇航学报200829(4): 1177-1181.
  ZHANG H B, ZHENG W, TANG G J. Maneuver trajectory design with J2 correction based on shooting procedure[J]. Journal of Astronautics200829(4): 1177-1181 (in Chinese).
52 NA T Y. Computational methods in engineering boundary value problems[M]. New York: Academic Press, 1979: 76-85.
53 MORRISON D, RILEY J, ZANCANARO J F. Multiple shooting method for two-point boundary value problems[J]. Communications of the ACM19625: 613-614.
54 CHARTIER P, PHILIPPE B. A parallel shooting technique for solving dissipative ODE's[J]. Computing199351(3): 209-236.
55 胡朝江, 陈士橹. 改进直接多重打靶算法及其应用[J]. 飞行力学200422(1): 14-17.
  HU C J, CHEN S L. An improved multiple shooting algorithm for direction solution of optimal control problem and its application[J]. Flight Dynamics200422(1): 14-17 (in Chinese).
56 崔文豪. J2摄动下的卫星编队队形重构与队形保持方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2019: 27-34.
  CUI W H. Research on the satellite formation reconfiguration and keeping under J2 perturbation[D]. Harbin: Harbin Engineering University, 2019: 27-34 (in Chinese).
57 张光澄. 最优控制计算方法[M]. 成都: 成都科技大学出版社, 1991: 113-117.
  ZHANG G C. Optimal control calculation method[M]. Chengdu: Chengdu University of Science and Technolo-gy Press, 1991: 113-117 (in Chinese).
58 王大轶, 李铁寿, 马兴瑞. 月球最优软着陆两点边值问题的数值解法[J]. 航天控制200018(3): 44-49, 55.
  WANG D Y, LI T S, MA X R. Numerical solution of TPBVP in optimal lunar soft landing[J]. Aerospace Control200018(3): 44-49, 55 (in Chinese).
59 张雷, 曾蓉, 陈聆. 非线性最优控制计算方法及其应用[M]. 北京: 科学出版社, 2015: 116-128.
  ZHANG L, ZENG R, CHEN L. Calculation method of nonlinear optimal control and its application[M]. Beijing: Science Press, 2015: 116-128 (in Chinese).
60 彭坤, 彭睿, 黄震, 等. 求解最优月球软着陆轨道的隐式打靶法[J]. 航空学报201940(7): 322641.
  PENG K, PENG R, HUANG Z, et al. Implicit shooting method to solve optimal Lunar soft landing trajectory[J]. Acta Aeronautica et Astronautica Sinica201940(7): 322641 (in Chinese).
61 LEE E S. Quasilinearization and invariant imbedding, with applications to chemical engineering and adaptive control[M]. New York: Academic Press, 1968
62 冯浩阳, 岳晓奎, 汪雪川. 大范围收敛的摄动Lambert问题新型解法:拟线性化-局部变分迭代法[J]. 航空学报202142(11): 524699.
  FENG H Y, YUE X K, WANG X C. A novel quasi linearization-local variational iteration method with large convergence domain for solving perturbed Lambert’s problem[J]. Acta Aeronautica et Astronautica Sinica202142(11): 524699 (in Chinese).
63 SPALDING D B. A novel finite difference formulation for differential expressions involving both first and second derivatives[J]. International Journal for Numerical Methods in Engineering19724(4): 551-559.
64 REINHARDT H J. Analysis of approximation methods for differential and integral equations[M]. Berlin: Springer, 1985.
65 WAWRZYNIAK G G, HOWELL K C. Generating solar sail trajectories in the Earth-Moon system using augmented finite-difference methods[J]. International Journal of Aerospace Engineering20112011: 1-13.
66 闫海江, 唐硕, 泮斌峰. 亚轨道飞行器上升段轨迹快速生成方法研究[J]. 科学技术与工程201111(10): 2266-2270, 2293.
  YAN H J, TANG S, PAN B F. Rapid ascent trajectory generation of suborbital launch vehicle[J]. Science Technology and Engineering201111(10): 2266-2270, 2293 (in Chinese).
67 LIU C S, YEIH W, KUO C L, et al. A scalar homotopy method for solving an over/under-determined system of non-linear algebraic equations[J]. Computer Modeling in Engineering & Sciences200953(1):47-71.
68 PAN X, PAN B F. Practical homotopy methods for finding the best minimum-fuel transfer in the circular restricted three-body problem[J]. IEEE Access20208: 47845-47862.
69 郭铁丁. 深空探测小推力轨迹优化的间接法与伪谱法研究[D]. 北京: 清华大学, 2012: 20-21.
  GUO T D. Study of indirect and pseudospectral methods for low thrust trajectory optimization in deep space exploration[D]. Beijing: Tsinghua University, 2012: 20-21 (in Chinese).
70 潘迅, 泮斌峰. 基于同伦方法三体问题小推力推进转移轨道设计[J]. 深空探测学报20174(3): 270-275.
  PAN X, PAN B F. Optimization of low-thrust transfers using homotopic method in the restricted three-body problem[J]. Journal of Deep Space Exploration20174(3): 270-275 (in Chinese).
71 BAI X L, TURNER J, JUNKINS J. Bang-Bang control design by combing pseudospectral method with a novel homotopy algorithm: AIAA-2009-5955[R]. Reston: AIAA, 2009.
72 WATSON L T. Globally convergent homotopy algorithms for nonlinear systems of equations[J]. Nonlinear Dynamics19901(2): 143-191.
73 SHAFTO M. NASA technology roadmaps TA 11: Modeling, simulation, information technology, and processing: TA11[R]. Washington, D.C: NASA, 2015.
74 WOOLLANDS R, JUNKINS J L. Nonlinear differential equation solvers via adaptive Picard-Chebyshev iteration: Applications in astrodynamics[J]. Journal of Guidance, Control, and Dynamics201942(5): 1007-1022.
75 ATALLAH A M, WOOLLANDS R M, ELGOHARY T A, et al. Accuracy and efficiency comparison of six numerical integrators for propagating perturbed orbits[J]. The Journal of the Astronautical Sciences202067(2): 511-538.
76 WANG X C, ELGOHARY T A, ZHANG Z, et al. An adaptive local variational iteration method for orbit propagation in astrodynamics problems[J]. The Journal of the Astronautical Sciences202370(2): 1-34.
77 洪蓓, 辛万青. 基于hp自适应伪谱法的滑翔弹道快速优化设计[C]∥中国自动化学会控制理论专业委员会B卷. 上海:上海系统科学出版社, 2011: 1956-1961.
  HONG B, XIN W Q. Rapid gliding trajectory optimization via hp-adaptive pseudospectral method[C]∥Proceedings of the 30th Chinese control Conference. Shanghai: Shanghai Systems Science Press Limited, 2011:1956-1961 (in Chinese).
78 PENG H J, WANG X W, LI M W, et al. An hp symplectic pseudospectral method for nonlinear optimal control[J]. Communications in Nonlinear Science and Numerical Simulation201742: 623-644.
79 DARBY C L, HAGER W W, RAO A V. An hp-adaptive pseudospectral method for solving optimal control problems[J]. Optimal Control Applications and Methods201132(4): 476-502.
80 刘德贵, 宋晓秋. 常微分方程初值问题的并行算法[J]. 数值计算与计算机应用199516(3): 214-223.
  LIU D G, SONG X Q. Parallel algorithms for initial value problems for ordinary differential equations[J]. Journal of Unmerical Methods and Computer Applications199516(3): 214-223 (in Chinese).
81 SOLODUSHKIN S, IUMANOVA I. Parallel numerical methods for ordinary differential equations: A survey[C]∥CEUR Workshop Proceedings. CEUR-WS, 20161729: 1-10.
82 LUO Y Z, YANG Z. A review of uncertainty propagation in orbital mechanics[J]. Progress in Aerospace Sciences201789: 23-39.
83 ARISTOFF J M, HORWOOD J T, POORE A B. Orbit and uncertainty propagation: A comparison of Gauss-Legendre-, Dormand-Prince-, and Chebyshev-Picard-based approaches[J]. Celestial Mechanics and Dynamical Astronomy2014118(1): 13-28.
84 BALDUCCI M, JONES B, DOOSTAN A. Orbit uncertainty propagation and sensitivity analysis with separated representations[J]. Celestial Mechanics and Dynamical Astronomy2017129(1): 105-136.
85 JULIER S J, UHLMANN J K. Unscented filtering and nonlinear estimation[C]∥Proceedings of the IEEE. Piscataway: IEEE Press, 2004: 401-422.
86 LIOU J C, HALL D T, KRISKO P H, et al. LEGEND-a three-dimensional LEO–to–GEO debris evolutionary model[J]. Advances in Space Research200434(5): 981-986.
87 KUI L, BIN J, CHEN G S, et al. A real-time orbit SATellites Uncertainty propagation and visualization system using graphics computing unit and multi-threading processing: 8A2[R]. Piscataway: IEEE Press, 2015.
88 赵党军, 梁步阁, 杨德贵, 等. 基于序列凸优化的高超声速滑翔式再入轨迹快速优化[J]. 宇航总体技术20171(1): 34-40.
  ZHAO D J, LIANG B G, YANG D G, et al. Rapid planning of reentry trajectory via sequential convex optimization[J]. Astronautical Systems Engineering Technology20171(1): 34-40 (in Chinese).
89 MA Y Y, PAN B F, HAO C C, et al. Improved sequential convex programming using modified Chebyshev-Picard iteration for ascent trajectory optimization[J]. Aerospace Science and Technology2022120: 107234.
90 张帅. 变推力航天器轨道转移问题序列凸优化求解[D]. 哈尔滨: 哈尔滨工业大学, 2019: 1-6.
  ZHANG S. Optimal orbit transfer for continuous thrust spacecraft using sequential convex programming[D]. Harbin: Harbin Institute of Technology, 2019: 1-6 (in Chinese).
91 CHENG X M, LI H F, ZHANG R. Autonomous trajectory planning for space vehicles with a Newton-Kantorovich/convex programming approach[J]. Nonlinear Dynamics201789(4): 2795-2814.
92 郭杰, 相岩, 王肖, 等. 基于hp伪谱同伦凸优化的火箭垂直回收在线轨迹规划方法[J]. 宇航学报202243(5): 603-614.
  GUO J, XIANG Y, WANG X, et al. Online trajectory planning method for rocket vertical recovery based on hp pseudospectral homotopic convex optimization[J]. Journal of Astronautics202243(5): 603-614 (in Chinese).
93 邓雁鹏, 穆荣军, 彭娜, 等. 月面着陆动力下降段最优轨迹序列凸优化方法[J]. 宇航学报202243(8): 1029-1039.
  DENG Y P, MU R J, PENG N, et al. Sequential convex optimization method for lunar landing during powered descent phase[J]. Journal of Astronautics202243(8): 1029-1039 (in Chinese).
文章导航

/