基于改进粒子滤波的无人机编队协同导航算法
收稿日期: 2022-09-13
修回日期: 2022-11-04
录用日期: 2022-12-20
网络出版日期: 2022-12-27
基金资助
中央高校基础研究基金(3072022CF0801)
UAV formation cooperative navigation algorithm based on improved particle filter
Received date: 2022-09-13
Revised date: 2022-11-04
Accepted date: 2022-12-20
Online published: 2022-12-27
Supported by
Central University Foundation for Basic Research(3072022CF0801)
针对复杂环境下因外界干扰产生时变非高斯噪声的情况下主从式无人机群协同导航效果较差的问题,提出了一种改进的粒子滤波(PF)算法以提高导航精度,并降低了对从机测量设备的精度要求。首先以主机的高精度惯性导航系统(INS)和全球定位系统(GPS)导航信息为基准,结合从机上的低精度传感器,建立了观测模型。其次,利用改进的PF算法实现了多源导航信息的融合。针对PF的重要性概率密度函数选取和粒子退化问题,在扩展粒子滤波(EPF)的基础上,引入Levenberg-Marquardt迭代方法,保证滤波的稳定性和收敛性。在重采样阶段采用快速重采样方法,将得到的粒子集进行分类,对中等权重粒子不再进行重采样,其余粒子在归一化过程中利用自适应权重因子优化,使获得的样本粒子权重更加均匀,从而提高了计算效率和导航实时性。将提出的方法与其他几种PF进行对比,仿真结果表明,该算法可以有效地提高无人机(UAV)编队协同导航精度,具有一定实用价值。
关键词: 无人机编队; 协同导航; 扩展粒子滤波; Levenberg-Marquardt迭代; 重采样
岳敬轩 , 王红茹 , 朱东琴 , ALEKSANDR Chupalov . 基于改进粒子滤波的无人机编队协同导航算法[J]. 航空学报, 2023 , 44(14) : 327995 -327995 . DOI: 10.7527/S1000-6893.2022.27995
To address the problem of poor cooperative navigation of master-slave UAV swarms in complex environments with time-varying non-Gaussian noise due to external interference, an improved Particle Filter (PF) algorithm is proposed to improve navigation accuracy and reduce the accuracy requirements of the slave measurement equipment. Firstly, the observation model is established by taking the high-precision Inertial Navigation System (INS) and Global Position System (GPS) navigation information from the host machine as the reference and combining it with the low-precision sensors on the slave machine. Then, the fusion of multi-source navigation information is achieved using an improved PF algorithm. For the importance probability density function selection and particle degradation problems of PF, the Levenberg-Marquardt iterative method is introduced on the basis of Extended Particle Filter (EPF) to ensure the stability and convergence of the filter. In the resampling phase, the fast resampling method is proposed to classify the obtained particle set, and the medium weight particles are not resampled anymore, while the rest of the particles are optimized in the normalization process using adaptive weight factors to make the obtained sample particle weights more uniform, thus improving the computational efficiency and navigation real-time. The simulation results show that compared with other PFs, the proposed algorithm can effectively improve the accuracy of Unmanned Aerial Vehicle (UAV) formation cooperative navigation and has certain practical value.
1 | OLLERO A, MAZA I. Multiple heterogeneous unmanned aerial vehicles[M]. Berlin: Springer, 2007. |
2 | 谷旭平, 唐大全. 基于联邦滤波算法的无人机集群分层协同导航[J]. 系统工程与电子技术, 2022, 44(3): 967-976. |
GU X P, TANG D Q. Hierarchical cooperative navigation of UAV swarm based on federated filtering algorithm[J]. Systems Engineering and Electronics, 2022, 44(3): 967-976 (in Chinese). | |
3 | WANG S Z, ZHAN X Q, ZHAI Y W, et al.Performance estimation for Kalman filter based multi-agent cooperative navigation by employing graph theory[J].Aerospace Science and Technology,2021,112:106628. |
4 | XU L, LIU J, XIE L F, et al. Multi-UAV navigation and recharging for fair and sustainable coverage in wireless networks[C]∥ Proceedings of the 3rd International Conference on Advanced Information Science and System. New York: ACM, 2021: 1-6. |
5 | SECO-GRANADOS G, LóPEZ-SALCEDO J, JIMéNEZ- BA?OS D, et al. Challenges in indoor global navigation satellite systems: Unveiling its core features in signal processing[J]. IEEE Signal Processing Magazine, 2012, 29(2): 108-131. |
6 | DEHGHANI M A, MENHAJ M B. Integral sliding mode formation control of fixed-wing unmanned aircraft using seeker as a relative measurement system[J]. Aerospace Science and Technology, 2016, 58: 318-327. |
7 | 许晓伟, 赖际舟, 吕品, 等. 多无人机协同导航技术研究现状及进展[J]. 导航定位与授时, 2017, 4(4): 1-9. |
XU X W, LAI J Z, LV P, et al. A literature review on the research status and progress of cooperative navigation technology for multiple UAVs[J]. Navigation Positioning and Timing, 2017, 4(4): 1-9 (in Chinese). | |
8 | 陈丹琪, 金国栋, 谭力宁, 等. 一种基于KL-AEPF的无人机侦察移动目标定位算法[J]. 仪器仪表学报, 2019, 40(9): 227-236. |
CHEN D Q, JIN G D, TAN L N, et al. A KL-AEPF-based UAV reconnaissance moving target localization algorithm[J]. Chinese Journal of Scientific Instrument, 2019, 40(9): 227-236 (in Chinese). | |
9 | 胡士强, 敬忠良. 粒子滤波算法综述[J]. 控制与决策, 2005, 20(4): 361-365. |
HU S Q, JING Z L. Overview of particle filter algorithm[J]. Control and Decision, 2005, 20(4): 361-365 (in Chinese). | |
10 | KUPTAMETEE C, AUNSRI N. A review of resampling techniques in particle filtering framework[J]. Measurement, 2022, 193: 110836. |
11 | 张颖, 高灵君. 基于格拉布斯准则和改进粒子滤波算法的水下传感网目标跟踪[J]. 电子与信息学报, 2019, 41(10): 2294-2301. |
ZHANG Y, GAO L J. Target tracking with underwater sensor networks based on Grubbs criterion and improved particle filter algorithm[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2294-2301 (in Chinese). | |
12 | AGGARWAL P, SYED Z, EL-SHEIMY N. Hybrid extended particle filter (HEPF) for integrated civilian navigation system[C]∥ 2008 IEEE/ION Position, Location and Navigation Symposium. Piscataway: IEEE Press, 2008: 984-992. |
13 | VAN DER MERWE R, DOUCET A, DE FREITAS N, et al. The unscented particle filter[C]∥Proceedings of the 13th International Conference on Neural Information Processing Systems.Cambridge: MIT Press,2000: 584-590. |
14 | FAN Y, ZHANG Y G, WANG G Q, et al. Maximum correntropy based unscented particle filter for cooperative navigation with heavy-tailed measurement noises[J]. Sensors (Basel, Switzerland), 2018, 18(10): 3183. |
15 | 孙伟, 刘经洲. 基于Huber鲁棒容积裂变粒子滤波的协同导航方法[J]. 仪器仪表学报, 2022, 43(2): 166-175. |
SUN W, LIU J Z. Cooperative navigation method based on the Huber robust cubature fission particle filter[J]. Chinese Journal of Scientific Instrument, 2022, 43(2): 166-175 (in Chinese). | |
16 | LI T, SUN S, SATTAR T P. Adapting sample size in particle filters through KLD-resampling[J]. Electronics Letters, 2013, 49(12): 740-742. |
17 | ZHANG X Y, LIU D, LEI B Y, et al. An intelligent particle filter with resampling of multi-population cooperation[J]. Digital Signal Processing, 2021, 115: 103084. |
18 | YANG J, CUI X R, LI J, et al. Particle filter algorithm optimized by genetic algorithm combined with particle swarm optimization[J]. Procedia Computer Science, 2021, 187: 206-211. |
19 | ZHANG M, JIA H T, SHEN Z. Improved resampling procedure based on genetic algorithm in particle filter[J]. Journal of University of Electronic Science and Technology of China, 2015, 44(3): 344-349. |
20 | 刘海涛, 林艳明, 陈永华, 等. 基于遗传算法的智能粒子滤波重采样策略研究[J]. 电子与信息学报, 2021, 43(12): 3459-3466. |
LIU H T, LIN Y M, CHEN Y H, et al. A study on resampling strategy of intelligent particle filter based on genetic algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3459-3466 (in Chinese). | |
21 | 国强, 刘雪萌, 周凯. 一种改进粒子滤波算法实现的多径参数估计[J]. 西安电子科技大学学报, 2022, 49(3): 120-128. |
GUO Q, LIU X M, ZHOU K. Multipath parameter estimation realized by an improved particle filter algorithm[J]. Journal of Xidian University, 2022, 49(3): 120-128 (in Chinese). | |
22 | XU W J, LI J Y, BAI J J, et al. Ship tracking based on the fusion of Kalman filter and particle filter[J]. Journal of Physics: Conference Series, 2021, 2113(1): 012017. |
23 | CHEN M X, XIONG Z, SONG F Y, et al. Cooperative navigation for low-cost UAV swarm based on Sigma point belief propagation[J]. Remote Sensing, 2022, 14(9): 1976. |
24 | LI L Q, JI H B, LUO J H. The iterated extended Kalman particle filter[C]∥ IEEE International Symposium on Communications and Information Technology, 2005. Piscataway: IEEE Press, 2006: 1213-1216. |
25 | 杨柳, 陈艳萍. 一种新的Levenberg-Marquardt算法的收敛性[J]. 计算数学, 2005, 27(1): 55-62. |
YANG L, CHEN Y P. On the convergence of a new Levenberg-Marquardt method[J]. Mathematica Numerica Sinica, 2005, 27(1): 55-62 (in Chinese). | |
26 | 冯驰, 王萌, 汲清波. 粒子滤波器重采样算法的分析与比较[J]. 系统仿真学报, 2009, 21(4): 1101-1105. |
FENG C, WANG M, JI Q B. Analysis and comparison of resampling algorithms in particle filter[J]. Journal of System Simulation, 2009, 21(4): 1101-1105 (in Chinese). |
/
〈 |
|
〉 |