火箭发动机燃烧室中燃烧噪声的计算模型
收稿日期: 2022-10-21
修回日期: 2022-11-30
录用日期: 2022-12-13
网络出版日期: 2022-12-22
基金资助
省部级项目
Calculation model of combustion noise in rocket motor chamber
Received date: 2022-10-21
Revised date: 2022-11-30
Accepted date: 2022-12-13
Online published: 2022-12-22
Supported by
Provincial or Ministerial Level Project
燃烧噪声一般分为直接噪声和间接噪声,推导了喉部壅塞工况下燃烧室中因不稳定释热产生的直接噪声和间接噪声在时域和频域的计算模型,该模型考虑了熵波的耗散和声波的衰减。将存在不稳定释热的燃烧室简化为加热直管进行理论计算。与实验结果相比,直接噪声预示误差小于4%,压力扰动的趋势基本一致。基于该模型分析了管长和温度扰动对噪声强度的影响,结果表明:管长越短,直接噪声和间接噪声强度越大;管长越长,直接噪声和间接噪声分离越清晰;直接噪声和间接噪声强度随温度扰动线性增加,无耗散条件下直接噪声增长率和强度均是间接噪声的2倍。
曾佳进 , 李军伟 , 马宝印 , 李春杰 , 王宁飞 . 火箭发动机燃烧室中燃烧噪声的计算模型[J]. 航空学报, 2023 , 44(18) : 128148 -128148 . DOI: 10.7527/S1000-6893.2022.28148
Combustion noise is generally divided into direct noise and indirect noise. The model of direct and indirect noises caused by unstable heat release in combustors with throat congestion is derived in time and frequency domain, respectively. The dissipation of entropy waves and attenuation of acoustic waves are considered. A combustor with unstable heat release is simplified as a straight tube heated by an electric heat source for theoretical calculation. Compared with the experimental results, the prediction error of the direct noise is smaller than 4%, and the trend of pressure disturbance is basically the same. Based on this model, the effects of pipe length and temperature disturbance on noise intensity are analyzed. The results show that the shorter pipe length causes larger intensity of direct and indirect noises, and the longer pipe length results in clearer separation between these two noises. The intensity of the direct noise and indirect noise increases linearly with the temperature disturbance, and the growth rate and intensity of the direct noise are twice that of the indirect noise without dissipation.
1 | DE DOMENICO F, ROLLAND E O, HOCHGREB S. Detection of direct and indirect noise generated by synthetic hot spots in a duct[J].Journal of Sound and Vibration,2017,394:220-236. |
2 | 孙晓峰,董旭,张光宇,等 .特征值理论在稳定性预测中的应用研究进展[J].航空学报,2022,43(10):527408. |
SUN X F, DONG X, ZHANG G Y, et al. Progress review of application of eigenvalue theory to stability prediction[J]. Acta Aeronautica et Astronautica Sinica, 2022,43(10):527408 (in Chinese). | |
3 | STOW S R, DOWLING A P, HYNES T P. Reflection of circumferential modes in a choked nozzle[J]. Journal of Fluid Mechanics, 2002, 467: 215-239. |
4 | 张峤. 固体火箭发动机涡声耦合振荡特性研究[D]. 北京:北京理工大学,2011. |
ZHANG Q. Research on oscillation characteristics induced by vortex acoustic coupling in solid rocket motors[D]. Beijing: Beijing Institute of Technology,2011 (in Chinese). | |
5 | T'IEN J S, SLRLGNANO W A, SUMMERFIELD M. Theory of L-star combustion instability with temperature oscillations[J]. AIAA Journal, 1970, 8(1): 120-126. |
6 | BAKE F, RICHTER C, MüHLBAUER B, et al. The Entropy Wave Generator (EWG): A reference case on entropy noise[J]. Journal of Sound and Vibration, 2009, 326(3-5): 574-598. |
7 | DE DOMENICO F. Behaviour of accelerating entropy spots[D]. Cambridge: University of Cambridge, 2019. |
8 | HOWE M S. Indirect combustion noise[J]. Journal of Fluid Mechanics, 2010, 659: 267-288. |
9 | MARBLE F E, CANDEL S M. Acoustic disturbance from gas non-uniformities convected through a nozzle[J]. Journal of Sound and Vibration, 1977, 55(2): 225-243. |
10 | LAMARQUE N, POINSOT T. Boundary conditions for acoustic eigenmodes computation in gas turbine combustion chambers[J]. AIAA Journal, 2008, 46(9): 2282-2292. |
11 | ECKSTEIN J, FREITAG E, HIRSCH C, et al. Experimental study on the role of entropy waves in low-frequency oscillations in a RQL combustor[J]. Journal of Engineering for Gas Turbines and Power, 2006, 128(2): 264-270. |
12 | GOH C S, MORGANS A S. The influence of entropy waves on the thermoacoustic stability of a model combustor[J]. Combustion Science and Technology, 2013, 185(2): 249-268. |
13 | MOREAU S, DURAN I. Analytical and numerical study of the entropy wave generator experiment on indirect combustion noise[C]∥ Proceedings of the 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference). Reston: AIAA, 2011. |
14 | LEYKO M, NICOUD F, POINSOT T. Comparison of direct and indirect combustion noise mechanisms in a model combustor[J]. AIAA Journal, 2009, 47(11): 2709-2716. |
15 | LEYKO M, MOREAU S, NICOUD F, et al. Numerical and analytical modelling of entropy noise in a supersonic nozzle with a shock[J]. Journal of Sound and Vibration, 2011, 330(16): 3944-3958. |
16 | DURáN I, MOREAU S, POINSOT T. Analytical and numerical study of combustion noise through a subsonic nozzle[J]. AIAA Journal, 2013, 51(1): 42-52. |
17 | MORGANS A S, DURAN I. Entropy noise: A review of theory, progress and challenges[J]. International Journal of Spray and Combustion Dynamics, 2016, 8(4):285-298. |
18 | MACQUISTEN M A, WHITEMAN M, STOW S R, et al. Exploitation of measured flame transfer functions for a two-phase lean fuel injector to predict thermoacoustic modes in full annular combustors[C]∥ Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. New York: ASME, 2014. |
19 | 杜功焕, 朱哲民, 龚秀芬. 声学基础[M]. 南京: 南京大学出版社, 2012. |
DU G H, ZHU Z M, GONG X F. Acoustics foundation[M]. Nanjing: Nanjing University Press, 2012 (in Chinese). | |
20 | JOHNSTON J P, SCHMIDT W E. Measurement of acoustic reflection from an obstruction in a pipe with flow[J]. The Journal of the Acoustical Society of America, 1978, 63(5): 1455-1460. |
21 | 蔡体敏. 固体火箭发动机工作过程的数值分析[M]. 西安: 西北工业大学出版社, 1991. |
CAI T M. Numerical analysis of working process of solid rocket motor[M]. Xi’an: Northwestern Polytechnical University Press, 1991 (in Chinese). | |
22 | MORGANS A, GOH C S. The effect of entropy wave dissipation and dispersion on thermoacoustic instability in a model combustor[C]∥ Proceedings of the 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference). Reston: AIAA, 2011. |
23 | BAUM J D, LEVINE J N. Modeling of nonlinear longitudinal instability in solid rocket motors[J]. Acta Astronautica, 1986, 13(6-7): 339-348. |
/
〈 |
|
〉 |